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Abstract
This paper explores variability in the fundamental frequency
(f0) of utterances containing the remote past marker BIN in
African American English, which has been described as hav-
ing higher f0, intensity and duration relative to preceding mate-
rial, and reduced f0 following, though with some interspeaker
variability (Green et al. 2022). Here we re-analyze data from
Green et al. (2022) to characterize the space of possible pho-
netic realizations of BIN utterances. We computed the 90th per-
centile f0 value in pre-/on-/post-BIN regions to create a 3-point
“topline” f0 shape profile of the utterance (Cooper & Sorensen
1981) and performed time series clustering and principal com-
ponents analysis (PCA). Two clusters were identified, one with
higher f0 on BIN and lower f0 post-BIN, and one with lower
f0 on BIN and higher f0 post-BIN. Results from PCA indicate
speakers vary along two dimensions: one relating to pre-BIN
f0 and one to post-BIN f0. Both dimensions were tied to f0
height on BIN, demonstrating the role that global aspects of the
contour play in the variability. We show how the topline rep-
resentation of f0 contour shape is robust to missing values and
uncontrolled sentences and thus useful for naturalistic speech.
Index Terms: intonation, African American English, variabil-
ity

1. Introduction
In African American English (AAE)1 there are multiple types
of “been” used for marking tense and aspect, including remote
past BIN (orthography used by linguists) and auxiliary perfect
been (see [1]). While they are string identical, they differ in
meaning and prosody. Past work on prosody has compared aux-
iliary been used in perfect contexts (also present in Mainstream
American English, or MAE), and remote past BIN used to situ-
ate an event in the remote past or for habitual actions [2]. The
remote past BIN is not present in MAE, but a similar meaning
can be expressed with a verb(s) + adverb or adverbial phrase
[1]. Two pronunciations of the remote past BIN are shown in
Figure 1, both elicited with the same context. The remote past
BIN has been referred to as ‘Stressed BIN’ [3, 4], as it is often
realized with prominence on ‘BIN.’ Acoustically, it has been
described as having high fundamental frequency (f0), intensity
and duration on BIN and compressed f0 range after BIN [2, 5].

Less attention has been paid to variability in the realization
of BIN utterances across speakers, which can be clearly seen by
comparing the two pitch tracks in Figure 1. The top pitch track
shows a clear f0 peak on BIN, while the bottom shows a higher
f0 before BIN and a much smaller peak on BIN (also noted in
[5] and [6]).

1Here we adopt the term African American English to refer to a vari-
ety of English that has set syntactic, phonological, semantic, pragmatic,
and lexical patterns that are intertwined with structures of Mainstream
American English (MAE) [1]. It is sometimes referred to as African
American Language or African American Vernacular English, among
other names.
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Figure 1: Pronunciations of the remote past BIN from two dif-
ferent speakers, la09 (top) and la04 (bottom), elicited in the
same context. The sentences could be paraphrased in MAE as:
‘Reverend Williams has been marrying those people for a long
time (and is continuing to do so)’

The fact that this degree of variability exists despite a com-
mon remote past meaning raises interesting questions about the
ways the same intonational category may be realized phoneti-
cally. Several past studies have looked at variation in AAE (e.g.,
[7]), but much work on prosodic variation in AAE has focused
on comparisons with MAE (e.g., [8], [9], [10], [11]), rather than
considering variability with respesct to the rest of the intona-
tional phonology of AAE. In intonation research more gener-
ally, variation has been less explored than for segmental con-
trasts [12], [13], [14]. Looking at variation over the course of
an utterance brings up specific challenges that are often not at
issue when investigating segmental variation, especially when
it comes to more naturalistic speech. These include missing f0
values, and differences in sentence length and segmental con-
tent.

This paper has two main goals. The first is to take a deeper
look at prosodic variation in BIN utterances, a necessary first
step toward understanding the relation between prosody and
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the remote past aspectual marker in AAE. Characterizing this
variation will make it possible to explore conditioning factors.
The second goal is to demonstrate a viable methodology for
exploring intonational variation that addresses the challenges
inherent in working with naturalistic data, a point often over-
looked, as intonation research often deals with carefully con-
trolled data. We test an acoustic, data-driven method to cap-
ture variation in f0 contour shape by generating f0 “toplines”
[15], which captures overall f0 contour shapes while being ro-
bust to missing f0 values (due to segmental perturbations or
interruptions/disfluencies) and is generalizable across different
sentences of different lengths. We demonstrate why other data-
driven methods including time series clustering and functional
principal components analysis, which have become increas-
ingly popular in work on intonation ([14],[16], [17], [18], [19],
[20] and many others), face challenges when applied to natu-
ralistic data. We apply our topline method to a multispeaker
dataset of BIN utterances, which allows us to then make use
of clustering and principal components analysis. Using these
methods, we discover several patterns in prosodic variation over
the course of BIN utterances, which enriches our understanding
of the prosodic realization of the remote past in AAE.

2. Materials and Methods
2.1. Materials

Data come from 8 adult members of an AAE-speaking com-
munity in southwest Louisiana (5 female, 3 male), previously
analyzed in [5], which also describes the stimuli, procedures,
and speaker demographics in full detail. In brief, remote past
BIN and perfect been utterances were elicited with written
prompts, with situational context presented auditorily and visu-
ally. Recordings were segmented and forced aligned using the
Montreal Forced Aligner [21]. A linguistically-trained native
speaker from the community classified each elicited utterance
in isolation as a BIN or been perfect and also judged each utter-
ance for acceptability in the situational context provided.

Only the 311 tokens unambiguously classified as BIN and
judged acceptable were included for analysis here. While
this data set is small, it is still currently the largest set of
recorded BIN utterances available. The Corpus of Regional
African American Language (CORAAL) [22]—now with over
160 hours of recordings—has become the go-to data source
for much acoustic work on AAE in the past five years. But
[5] found only 20 instances of BIN constructions in the en-
tire corpus, potentially both because the semantic conditions
required for a BIN construction rarely occur in sociolinguis-
tic interviews, [4, p. 99] and also because, even if the semantic
conditions were met, speakers chose to use an adverbial form
like ”for a while” instead of BIN 87% of the time.

2.2. Methods

F0 was extracted using Praat’s autocorrelation algorithm [23],
using the same speaker-specific f0 floor and ceiling values as
[5] and otherwise default settings. F0 was extracted at 10ms
intervals for full f0 contours; the 90th percentile f0 value was
extracted from each word for toplines. The 90th percentile value
rather than the f0 maximum was chosen for robustness against
wide f0 excursions from segmental perturbations—a common
strategy in large-scale f0 processing and the automatic detection
of f0 range [24]. All further data analysis was done in R [25],
and plots were drawn with ggplot2 [26].

For full f0 contours, missing f0 values were trimmed or re-

Figure 2: Schematic of topline over highest peaks in pre-BIN,
on-BIN, and post-BIN region for la09 example, Fig. 1.

placed by estimates computed from cubic spline interpolation
using the imputeTS R package [27] (also used for f0 by [18]),
see Sec. 3.1. We computed the topline of a BIN f0 contour as the
3-point sequence of the maximum 90th percentile f0 value over
all words in each of the pre-BIN, on-BIN, and post-BIN regions,
see Fig. 2. The word immediately following BIN was also in-
cluded in the on-BIN region because there was sometimes peak
delay on BIN. Missing values could be and were ignored for the
topline computations. F0 data from function words a, the, at,
for and to were excluded, since they were frequently all miss-
ing values, or impacted by segmental perturbations, like in f0 at
the beginning of the [p] in people in Fig. 2.

Binning the f0 contour into the pre-, on-, and post-BIN re-
gions for the topline effectively time-normalized across utter-
ances: every utterance’s f0 contour was summarized as 3 points,
regardless of how long the utterance or any of the BIN regions
were. Similarly, BIN was “registered” as a landmark [28, §3.3]
in the full f0 contour by aligning time courses at both the onset
and offset of BIN, see the two vertical dividing lines in Fig. 8.
Both full f0 contours and toplines were log-transformed and by-
token mean centered.

Due to the limited amount of data available, we focused on
visualization and exploratory data analysis rather than inferen-
tial statistics: (i) time series clustering and (ii) principal compo-
nents analysis (PCA). These methods allowed us to explore, re-
spectively: how can we group the space of BIN topline realiza-
tions? And what key properties (principal components) charac-
terize the range of BIN topline variability? We performed parti-
tional clustering based on Euclidean distance using dtwclust
[29]. We tested having 2-4 clusters, and all cluster validity in-
dices indicated 2 was the optimal number. PCA was computed
using the prcomp function, and visualizations were aided by
factoextra [30]. We also did clustering on the full f0 con-
tours, for comparison, with the same settings. For full details,
see the OSF repository at https://osf.io/7qnvk/.

3. Results
3.1. Distribution of missing values

Every single one of the 311 BIN f0 contours contained miss-
ing values (NAs)—altogether, 15,442 (23% of extracted f0 val-
ues). Thus, if we had followed the common strategy of omitting
contours with missing values, we would have had no data left
to analyze. Table 1 shows four key sources of missing values
and how we handled them for the full f0 contour. We trimmed
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Table 1: Sources of missing values, percentage of missing val-
ues due to source, and distribution and strategies for handling
them for full f0 contours

Source % Strategy for handling

Utt-final plurals 39.9 Remove trailing NAs
the 6.7 Remove leading NAs, impute NAs
BIN 5.3 Impute NAs
Silence 3.9 Remove trailing/leading, impute
Other 44.2 Impute NAs
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Figure 3: Wild cubic spline imputation of f0 values over missing
value region from utterance-medial [s] followed by 230-ms (flu-
ent) pause, ≈ timepoints 100-150. Imputed values are black.

utterance-initial (“leading”) or -final (“trailing”) strings of miss-
ing values from the f0 contour. This trimming handled at least
some of the missing values from utterance-final words that hap-
pened to be s-final plurals (40% of NAs), e.g., containers, win-
ners, and instances of the that were utterance-initial (17/47
BIN items). It also helped handle some silent intervals, e.g.,
modal stimuli included an utterance-initial “Aw” for natural-
ness, which speakers sometimes followed with a pause; we
trimmed off ”Aw”, and that enabled us to trim off NAs in the
pause as leading NAs.

Removing leading/trailing NAs eliminated 60% of the
missing values (leaving 9,337) and reduced missing values from
288/311 tokens, but still left 308 tokens with missing values.
The remaining, utterance-medial missing values had to be re-
placed with estimates (imputed with via imputeTS [27]) to
maintain continuity of the f0 time series. Fig. 3 shows how
wildly imputation can behave over a voiceless interval [s] fol-
lowed by a pause (the giant spike in black around points 100-
150) between The maintenance workers and BIN, as well as ex-
amples of imputation over other voiceless [s] regions. The im-
puted f0 spikes in the figure also highlight that handling missing
values does not handle large f0 excursions due to segmental per-
turbations, which then greatly affect imputation downstream.

3.2. Topline results

Unlike the full f0 contours, the toplines were robust to miss-
ing values from voiceless regions, segmental perturbations, and
silences and easily generalized across different sentences with
different lengths, words, stress positions, etc. Median toplines
are shown in Fig. 4 across speakers and for each individual
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Figure 4: Median topline across speakers (left) and for each
speaker (right)
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Figure 5: Topline tokens, color coded by cluster. “little BIN”:
darker, in blue; “big BIN”: lighter, in orange.

speaker. Aggregating the data like in Fig. 4 obscures the pres-
ence of BIN contour realizations like Fig. 1, bottom.

The topline tokens split into two clusters that we nicknamed
“big BIN” and “little BIN”, shown in Fig. 5. The “big BIN”
cluster (lighter, in orange) is characterized by higher on-BIN f0
and lower post-BIN f0. The “little BIN” cluster (darker, in blue)
is characterized by a lower on-BIN f0 and a higher post-BIN f0.
The distinction between the two clusters in terms of pre-BIN
f0 is not as clear. Fig. 6 shows toplines by individual speaker,
also color-coded by cluster like in Fig. 5. While the top row
of speakers tended to produce “little BINs”, the bottom row of
speakers tended to produce “big BINs”. However, all speakers
produced tokens in both clusters.

PCA results yielded two principal components (PCs) that
accounted for 99% of variance in toplines, see Fig. 7. PC1 ac-
counted for 68% of the variance and correlated most strongly
with lower post-BIN and to a lesser degree with higher on-BIN
f0. PC2 (32% of variance) correlated most strongly with lower
pre-BIN and to a lesser degree with higher on-BIN f0. In other
words, the primary dimension of variation (PC1) used by the
speakers for BIN toplines was to push down post-BIN f0 while
simultaneously raising the on-BIN peak. Independently, the
secondary dimension of variation was to push down pre-BIN
f0 while simultaneously raising the on-BIN peak. The simulta-
neous lowering outside the BIN region and raising in the BIN
region characteristic of both PCs is reminiscent of a seesaw.
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Figure 6: Topline tokens by speaker, color coded by cluster as-
signed as in Fig. 5, “big BIN”: lighter, in orange; “little BIN”:
darker, in blue.
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Figure 7: Correlation circle for PCs. PC1 was highly negatively
correlated with post-BIN f0, and PC2 with pre-BIN f0. Both
PCs were moderately positively correlated with on-BIN f0.

3.3. Full f0 contour results

Clustering over the full f0 contours results into 291 tokens
falling into one cluster and only 20 in the other. Fig 8 shows
the distribution of tokens from each cluster for each individual
speaker. Unlike the topline characterizations in Fig. 6, it is not
clear what underlies the division into clusters nor that there are
speaker-specific tendencies for BIN realization.

4. Discussion and Conclusion
The empirical contribution of this paper is a a first acoustic ex-
ploration of prosodic variability in the realization of remote past
BIN utterances in African American English, a variety of En-
glish that is still relatively prosodically underdescribed. Two
distinct clusters emerged from time series clustering: one with
higher f0 on BIN and lower f0 post-BIN, and another with
higher post-BIN f0 and a smaller peak on BIN. Speakers tended
to produce realizations from mostly just one of the clusters.
What might underlie speaker choice of BIN rendition is yet un-
clear. PCA results also highlight the main dimensions manipu-
lated by speakers in generating variability in the realization of
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Figure 8: Division of full f0 contours into two clusters by
speaker.

BIN constructions: a choice to fall to a lower f0 after BIN is
tied to reaching a higher peak on BIN. Our findings highlight
that aspects of the overall contour, and not just f0 scaling on
BIN alone, is involved in variation in BIN utterances, although
past descriptions of BIN have emphasized high f0/tone on just
BIN itself. While [5] found, in aggregate, that BIN utterances
have higher f0 peaks on BIN than in the pre- or post-BIN re-
gions, a substantial number of individual tokens examined here
do not necessarily conform to this pattern, i.e., some proportion
of “little BIN” realizations. The acoustic methods alone cannot
provide a decision on whether “little BIN” variants like la09’s
bottom utterance in Fig. 1 might be phonologically or otherwise
categorically distinct from “big BIN” variants, or other “little
BIN” realizations that don’t start out with such a high f0. But
the topline cluster labels and PC parameterizations can facili-
tate identifying BIN variants like Fig. 1 and uncovering what
conditioning factors give rise to them.

Our methodological contribution is to draw attention to
challenges with extending shape-based methods such as time
series clustering, functional PCA, and GAMMs to more natu-
ralistic data and characterizing f0 shape patterns extending over
much longer windows than a syllable. The algorithms used
in these methods typically assume/expect time courses without
any missing values. But more naturalistic, uncontrolled data—
as well as longer analysis windows—all increase the chances of
having missing f0 values in the f0 contour due to voiceless inter-
vals, silence, etc. We showed that while it is possible to remove
or impute missing values, imputations may introduce improba-
ble jumps in the f0 contour. Removing trailing/leading missing
values can affect duration/time normalization. It is also impor-
tant to consider the sources of missing values. When missing
values arise from silence in a mid-utterance juncture, no inter-
polation of f0 values over the silence makes sense. But if shape
components spanning across the juncture are of interest, then
the missing values need to be filled in for the shape-based meth-
ods. We demonstrated that a viable alternative is hearkening
back to 1970s-1980s low temporal resolution representations of
downtrend shapes such as the “topline” over f0 peaks, which
also has the benefit of easily generalizing across different sen-
tences with different lengths, stress positions, etc., due to its
sparsity of sampling.
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