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It is an unremarkable matter of course but a remarkable miracle of human cog-

nition that children learning tonal languages learn maps from the speech signal

to the abstract phonological tone concepts of their native language, which could

be any tone language of the world. As an initial step for understanding how

children learn tonal maps, this thesis focuses on working toward a characteri-

zation of what it is that is being learned—the class of possible maps from the

speech signal to tonal categories in natural language. By studying the structure

of this class of tonal maps, we can assess the learnability of the class under a

mathematically precise criterion for successful feasible learning. Characterizing

the learning problem as feasibly learnable is a fruitful direction for elucidating

the human learning problem.

Since the structure of tonal maps is conditioned on the phonetic space in which

they are defined, the focus of this thesis is determining an appropriate phonetic

parameterization of the speech signal for the domain of the tonal maps and for

representation of the data to the learner. We do this by assessing the separability

of tonal categories in different phonetic spaces. Studying the structure of the class
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of possible tonal maps necessitates studying tonal maps in a range of languages,

so we study tonal maps using a sample of cross-linguistic tonal production data

we collected in Bole, Beijing Mandarin, Cantonese, and White Hmong and with

a series of perception experiments we performed in Cantonese.

The bulk of the thesis motivates the inclusion of particular information from

the speech signal, since the phonetic realization of linguistic tone is widely be-

lieved to be limited to a single dimension of fundamental frequency, the acoustic

correlate of pitch. We show evidence from human perceptual experiments and

computational modeling: (i) motivating a temporal domain from the speech sig-

nal for tonal maps beyond the span of a single syllable, and (ii) demonstrating

that voice source parameters beyond f0 must be included for characterizing pho-

netic spaces for tonal maps in a wide range of languages.

While these results indicate potential sources of complexity for tonal maps, we

also show that coarse temporal resolution in sampling of the relevant parameters

from the speech signal suffices for good tonal category separability, hinting at

potential structure in tonal maps. Human listeners identify tones degraded to

be coarsely sampled at a comparable level of accuracy to that for intact tones in

Cantonese, and classification by machine with acoustic parameter spaces defined

only over a few real values shows a near partition of the phonetic space in the

sample of languages studied. The potential structure in tonal maps suggested by

these results is consistent with feasible learnability of tonal maps.
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CHAPTER 1

Introduction

In the days when the Sussman was a novice, Minsky once came to him as he sat

hacking at the PDP-6.

What are you doing? asked Minsky.

I am training a randomly wired neural net to play Tic-tac-toe, Sussman replied.

Why is the net wired randomly? asked Minsky.

I do not want it to have any preconceptions of how to play, Sussman said.

Minsky then shut his eyes.

Why do you close your eyes? Sussman asked his teacher.

So that the room will be empty.

At that moment, Sussman was enlightened.

(Appendix to the Jargon File, (on-line hacker Jargon File, 2003))

. . . an algorithm is likely to be understood more readily by understanding the nature

of the problem being solved than by examining the mechanism (and the hardware) in

which it is embodied. (Marr, 1982, 27)
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Overview

It is an unremarkable matter of course but a remarkable miracle of human cog-

nition that children learning tonal languages learn maps from the speech signal

to the abstract phonological tone concepts of their native language, which could

be any tonal language of the world.

A natural question is: how do children learn tonal maps—what is the compu-

tational procedure underlying this learning process? This is a question about the

algorithmic implementation of the learner. But an algorithm is a procedure that

transforms input into output, given a well-specified set of inputs, set of outputs,

and relation between the two (Cormen et al., 2001, 5): the characterization of a

learning algorithm for maps from the speech signal to tonal concepts is predicated

on the characterization of the input-output map—the learning function.

Unfortunately, at this point in time, we cannot precisely characterize any

component of the learning function for tonal maps. We may “know” that children

learn tonal maps, but we do not know what kind of evidence is used in learning

tonal maps—the domain of the function; we do not know what speakers know

about tonal maps—the range of the function; we do not know how the evidence

and tonal maps are related—the map between the input and output values; we

do not even know in exactly what sense it means to say that the tonal maps are

“learned”.

Thus, as an initial step for understanding how children learning tonal lan-

guages learn maps from the speech signal to tonal concepts, this thesis focuses on

characterizing what is being computed by the learner. We seek to elucidate the

range of the learning function for maps from the speech signal to tonal concepts—

the hypothesis space of the learner—and in particular, potential structure in the
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hypothesis space. Such structure directs our study of what a learning mechanism

for tonal maps could be; it gives us clues for how the learner might generalize from

the finite number of instances heard in the input to the infinitude of elements

defined by tonal concepts.

The strategy we take is to study aspects of tonal maps in a sample of speakers

of a sample of tonal languages. From the maps we study, we can better understand

what the space of the class of possible tonal maps for human languages is. An

understanding of the structure in the hypothesis space is necessary and sufficient

to characterize if the class of tonal maps is feasibly learnable, where the notion

of successful learning is mathematically precisely defined (Blumer et al., 1989;

Valiant, 1984; Vapnik and Chervonenkis, 1971). If the class does not appear to be

feasibly learnable, then we would reconsider the proposed structural restrictions

on possible tonal maps. Even if the proposed criterion for learnability might not

be exactly the relevant one for human learning so that our work does not bear

in the most direct way on the human learning problem, we expect work towards

characterizing the learning problem as feasibly learnable to provide necessary

direction for elucidating the human learning problem.

The body of this thesis addresses what information from the speech signal

is referenced in tonal maps. This tells us about the domain of maps from (a

subset of) information from the speech signal to tonal concepts. The bulk of our

work motivates the inclusion of particular information from the speech signal

in the domain for tonal maps (Ch. 2, 3, 5), but Ch. 4 and 5 also provide a

glimpse of structure in the class of tonal maps that would limit its complexity.

We emphasize the inclusion of information from the speech signal in the thesis

because the phonetic realization of linguistic tone is widely believed to be simple

in the sense that it is limited to a single dimension of fundamental frequency, f0
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(the physical correlate of the auditory percept of pitch) (Gauthier et al., 2007,

82),(Hyman, 2010, 1).

But even an entirely f0-based parameterization of tone can be highly multidi-

mensional, since we may choose to sample f0-based values arbitrarily densely in

time (Ch. 4) from an arbitrarily large temporal window of the speech signal (Ch.

2), and we may choose multiple ways to parametrize f0, e.g. with f0 height values

and with f0 velocity values (Ch. 5). We show that human listeners and machines

benefit from local contextual information from both neighboring and preceding

syllables in tonal identification, motivating a temporal domain from the speech

signal for tonal maps beyond the span of a single syllable (Ch. 2). Furthermore,

we demonstrate that f0-based parameters are insufficient for characterizing tones

in a wide range of tonal languages because: (i) there are tone languages in which

f0-based parameters alone are insufficient for contrasting tones, and even in tone

languages where f0-based parameters are thought to be sufficient for distinguish-

ing all tonal contrasts, (ii) f0 interacts with other voice source parameters and

cannot be extracted from the speech signal independent of these other parameters

(Chs. 4, 2, 3, 5) and (iii) listeners are sensitive to other voice source parameters

(Ch. 3).

However, there is structure in the class of possible tonal maps: we show that

coarse temporal resolution in sampling of the relevant parameters suffices for

good tonal concept separability—human listeners identify tones degraded to be

coarsely sampled at a comparable level of accuracy to that for intact tones (Ch.

4), and classification by machine with acoustic parameter spaces defined only

over a few real values shows a near partition of the phonetic space in a range of

languages (Chs. 4, 5).
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In this situating chapter, we introduce terminology used in the thesis (§1.1.1),

describe the learning problem in the context of phonological category acquisition,

motivate and define the study of the target of learning, the map from the pho-

netic space to phonological categories, (§1.1.2), and describe the larger research

questions (§1.1.3) and methodological abstractions taken in the thesis (§1.1.4) in

§1.1. Then, we explicate our particular model system (§1.2) for studying tonal

maps. We conclude by discussing what aspects of the parameterization of the

speech signal for phonological maps our model system allows us to study in com-

parison to previous model systems for the acquisition of phonological categories

and also specify which particular aspects we focus on in the thesis (§1.3).

1.1 Preliminaries

To begin with, we briefly introduce some terminology that we will use throughout

the thesis.

1.1.1 Some terminology

1.1.1.1 Learners and learnability

A learner is a map (a function) from a collection of possible data sets (the

function’s domain) to a class of target concepts (the function’s range). The

data sets are given as sets of examples, instances of each target concept, and

the concepts to be learned are categories (§1.1.1.2). We also call the learner’s

range, the class of target concepts, the hypothesis space of the learner.

For this thesis, the target concepts to be learned are what we call phonolog-
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ical maps—specifically, tonal maps—and we also refer to the hypothesis space

as the class of possible (tonal) maps. Explaining what phonological maps are

is the topic of the following section §1.1.2. Briefly, they are maps (functions) from

parameter vectors defining the space from which the examples for the learner are

drawn to phonological categories (§1.1.1.2).

The definition of learnability depends on the definition of the criteria for

successful learning. Learnability is a property of a hypothesis space rather than

a specific learner (learning function), since a hypothesis space does not uniquely

pick out a learner. Some criteria for successful learning require strictly that the

learner converge exactly on the target of learning for any target in the hypothesis

space. For modeling human learning, this may be too strict a criterion, so the

convergence can be relaxed to allow some deviation from the target in some

mathematically precise way. In addition, criteria for successful learning that

allow the learner sets of examples that are infinite in size do not consider resource

limitations that may be applicable in human learning. When we discuss whether

something is feasibly learnable, we informally refer to a criteria for successful

learning that takes into account limitations in resources for the learner that are

potentially relevant for human learning.

1.1.1.2 Parameters, parameter spaces, and categories

When we refer to a parameter in this thesis, we mean a real-valued parame-

ter. A set of parameters comprise a parameter space in Rd, where d is the

dimensionality of the parameter space and is simply the cardinality of the pa-

rameter set, the number of parameters in the set. We call the specific kind of

parameter space discussed in the thesis a phonetic parameter space because

the parameters are phonetic in nature. By phonetic, we refer to any property
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involved in the process of the transmission of speech sounds between speakers

and listeners—a phonetic parameter may be some quantity that is measurable

from the acoustic or articulatory record of the physical speech signal, e.g. the first

formant at the midpoint of a vowel or the maximum displacement of the tongue

tip during an obstruent, or some quantitative property of audition, e.g. pitch, or

a yet higher order measurable property of linguistic cognition.

In the thesis, we refer to maps from phonetic parameter spaces to phonological

concepts or categories. We use the terms concept and category interchange-

ably. When we refer to either, we do not mean the label for a category, such as

“Tone 1” or “the vowel /a/”; we are actually referring to a mapping from the

parameter space to a discrete element, a region (a set of points) over the param-

eter space labeled with the category name. “A category is a mental construct

which relates two levels of representation, a discrete level and a parametric level”

(Pierrehumbert, 2003b, 119).

When we use the term tone we mean lexical tone unless otherwise specified,

and in particular, we intend to refer to a lexical tonal phonological category. In

this thesis, we consider only maps to lexically contrastive phonological categories,

i.e. phonemes.

1.1.1.3 Category shapes and distributions

The consideration of the shape and distribution of concepts is crucial for assessing

the learnability of the class of concepts. One important property of a concept, if

it is a bounded region in a parameter space, is if it is connected. This means

that there are no “holes” in the region—all the denumerably infinitely many

points in the parameter space enclosed in the region are labeled as instances of

the concept. A subset of connected sets in the parameter space (regions) are also
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convex sets. A set of points if convex if a line segment may be drawn between

any two points in the set without leaving the region bounded by the set.

For the thesis, an important property of a phonetic space is how separable

the tonal concepts are in the space. Here, the geometric intuitive understanding

of separability is accurate: if two concepts overlap in the phonetic space, they are

not well-separated; if they are far apart (in Euclidean distance), they are well-

separated. Two concepts are linearly separable in a space if one can separate

them with a line, if the space is in R2, or more generally, with a hyperplane, the

higher-dimensional analogue of a line, in spaces in Rd for d > 2. We discuss linear

separability further in Chapters 2, 4, and 5.

1.1.1.4 Samples and sampling resolution

The realization of a tone as a physical speech signal event unfolds in time. There-

fore, the phonetic space for tones might very well include a sequence of parameter

vectors 〈~v1, ~v2, . . . , ~vi, . . . , ~vn〉 extracted over some finite number of timesteps ti

for {i ∈ N+|1 ≤ i ≤ n}. We call a parameter vector extracted at some timestep ti

a sample. The calculation of a parameter vector ~vi may occur over some finitely

bounded temporal window, a frame, rather than at an instantaneous point. We

refer to the time increment between frames, measured in some unit of time, as

the frameshift, and a larger frameshift implies a coarser/sparser sampling res-

olution, while a smaller frameshift implies a finer/denser sampling resolution.

We pay special attention to sampling resolution in Chapter 4.

All these terms are discussed further in the thesis. We now situate and mo-

tivate the study of phonological maps for understanding how tones are acquired

from the speech signal and more carefully define what we mean by phonological

map.
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1.1.2 Defining phonological maps

This thesis investigates the learnability of maps from the speech signal to lexical

tonal concepts in tone languages. It is a preliminary step in the study of a much

larger research question:

(Q0) How do children acquire phonological categories from the speech signal?

We address (Q0) using computational modeling, like previous studies of phono-

logical category learning, e.g. de Boer and Kuhl (2003); Lin (2005); Toscano and

McMurray (2010); Vallabha et al. (2007), and moreover, we ground our mod-

eling assumptions based on phonetic fieldwork and perception experiments we

conducted.

While a complete answer to Q0 necessitates a battery of behavioral, physio-

logical, production, and perceptual studies on infants from the womb to adult-

hood, particularly in the first years of life, our ability to probe infant knowledge

of phonological categories and connect this knowledge to their language input is

limited, cf. methodological approaches in Polka et al. (1995); Werker et al. (1998).

Thus, we make the choice to generalize our study to any learner so that we can

deploy mathematically-specified learners to learn from examples we have very

fine control over. The advantage of relying on computational approaches is that

we can make a tight connection between the data that a learner may be exposed

to (the domain of the learner, D, the collection of all possible data sets), the

hypothesis space of the learner (the range of the learner, R, the set of all possible

phonological categorizations), and the map from the collection of data sets to the

hypothesis space of the learner (the learning function, A). The challenge then

is to also maintain a tight connection between the computational modeling and
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what we know about human learners.

Thus, we modify our original research question:

(Q0′) How could a learner A : D → R from the collection of all possible data

sets, D, to the set of all possible phonological categorizations, R, acquire

lexical tonal categories from the speech signal in a way consistent with

our knowledge about how humans do it?

A key component in maintaining a tight connection between the computational

modeling and human cognition is to have a clear picture of what the target of

learning is (Dyson, 2004; Minsky and Papert, 1971). Thus, the goal of this thesis

is to bear on the definition of the range of the learner, R, the hypothesis space of

the learner in the acquisition of lexical tonal categories: we study the hypothesis

space to make progress towards characterizing if the target of learning in the

acquisition of lexical tonal categories in natural language is feasibly learnable, as

outlined in the overview.

What does it mean to have learned the tones of a tone language, e.g. the

four basic tones of Mandarin: Tones 1-4, respectively,
Ă
£ (high level), Ę£ (rise), ŁŘ£

(fall-rise), Ď£ (fall)? It means that a learner has learned a map from some subset

of the data sets, D, out of the collection of possible data sets D (for Mandarin)

to a subset of tonal maps, R, (for Mandarin) in the set of possible tonal maps in

the range (hypothesis space) of the learner, R,1 as is made (redundantly) explicit

in re-expressing A : D → R as the equivalent:

1A tonal language speaker does not learn one particular static mapping, between one par-
ticular data set and one particular tonal map. Learners are learners for life, so that their data
set is continuously updated and their tonal maps as well.
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A : {D|D ∈ D} → {R|R ∈ R} (1.1)

where, under the methodological abstraction taken in this thesis to restrict the

data to phonetic data (§1.1.4), tonal maps are a subset of a more general kind of

map, which we call a phonological map, with the working definition:

Phonological map: {physical speech signal events} → (1.2)

{phonological categories}

where the phonological categories are lexical tonal categories for tonal maps.

Restricting the data D to the learner to come from the physical speech signal

event—excluding, for instance, the context of the real-world situation in which

the event occurs—means that in our model of the learning problem, examples

for the learner are drawn from some phonetic space. This phonetic space is the

domain of the phonological map.

We show a familiar example of a well-studied phonological map in Fig. 1.1,

a vowel formant plot (Peterson and Barney, 1952). This is a map in a two-

dimensional phonetic space 〈F1 SS ,F2 SS 〉 (over the steady-state values of the first

and second formants) which maps unit-length sequences of phonetic parameter

vectors 〈F1 SS ,F2 SS 〉 to English vowel phonemes, cf. Table 1.

There are some things to note from Fig. 1.1 and Table 1.1 which are general

properties of phonological maps:

1. The domain of the phonological map is specified as sequences of phonetic

parameter vectors rather than as physical speech signal events as in Defini-

tion 1.2. We emphasize that the parameterization for the domain consists
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〈F1 SS ,F2 SS 〉 English vowel phoneme Note

〈240, 2280〉 {/i/} Actual data point

〈460, 1330〉 {/Ç/} Actual data point

〈475, 1220〉 {/U/} Actual data point

〈686, 1028〉 {/A, O/} Ambiguity

〈400, 3500〉 {/i/} Not a data point

: :

Table 1.1: The phonological map from steady state 〈F1 SS ,F2 SS 〉 formant space

to English vowel phonemic categories from Peterson and Barney (1952). Formant

measurements are from values reported in Praat (Boersma and Weenink, 2010)

using the command Create formant table (Peterson & Barney 1952).

of sequences of vectors because the speech signal unfolds in time and thus

we must consider the extraction of parameters over time. Expressing the

events with a lossy parameterization is in practice unavoidable—clearly en-

coding vowels as two steady-state formant values is lossy; even standard

higher-dimensional parameterizations in automatic speech recognition such

as a set of 39-dimensional mel frequency cepstrum coefficient vectors ex-

tracted with frameshifts on the order of 10 ms are lossy. What the param-

eterization should be is a choice the scientist must make, with an infinite

number of choices available. What the appropriate phonetic parameteriza-

tion of the physical speech event is, though, is hidden to us and needs to

be determined under some decision criteria.2 Making this determination

is non-trivial, but it is necessary for us to posit some finite parameteri-

2The meta-cognitive inquiry readily available to humans for understanding the communi-
cation of morphosyntactic meaning seems to be unavailable to us for understanding speech
communication at the physical and perceptual level of the speech signal.
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Figure 1.1: A classic example of a well-studied phonological map, the vowel

formant plot (Peterson and Barney, 1952).

zation to get a handle on the learning problem: the appropriate phonetic

parameterization for tonal maps is, in fact, the main focus of this thesis.

Without such a parameterization, it is impossible to represent the data to

the learner in a computational model that is relevant for understanding the

human learning problem. Without such a parameterization, it is also im-

possible to have the requisite scientific understanding of what the structure

of the class of possible learned phonological maps is to be able to character-
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ize the learnability of phonological maps, since the structure is conditioned

on the parameterization.

One further note about the parameterization of the domain of phonological

maps exemplified by the Figure 1.1 is that the phonetic parameter vectors

are physical, acoustic parameters that can be measured from recordings.

As we discuss in §1.1.4, the map of Definition 1.2 might be expanded as

a chain of intermediate maps, for instance, including one from the physi-

cal parameters to ones associated with auditory perception. Because the

physical parameters rather than the parameters internal to the brain and

mind are the ones most accessible to us both by measurement and in our

understanding of them, we generally restrict our exploration of phonetic

parameter spaces to physical ones in this thesis.

2. There are regions of 〈F1 SS ,F2 SS 〉 space where the same 〈F1 SS ,F2 SS 〉 point

is mapped to multiple English vowel phonemes: regions where vowel ellipses

overlap. This highlights that ambiguity in phonetic-phonological maps im-

plies a range of sets of phonological categories rather than of single phono-

logical categories. From this observation and the previous one on parame-

terization, we revise our definition of phonological maps:

Phonological map: {sequences of phonetic parameter vectors} → (1.3)

{sets of phonological categories}

3. The map is not total: there are some points in Figure 1.1 that are not

enclosed in any of the regions labeled by a vowel category. This may also

be the case for the true map being modeled and for phonological maps

in general: there may exist physical speech events which are not mapped

to any phonological category. While the map in Figure 1.1 is not total,
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the phonological vowel categories are each mapped to simply connected

bounded and continuous regions over the phonetic space, and the regions are

roughly ellipses in shape. Thus, each region includes infinitely many points

that are not in the learner’s finite data sample, and the map represents

generalization in the learner from finite sets of examples of each category

to categories consisting of non-denumerably infinite sets of points.

As Pierrehumbert (1990) discusses, phonological maps have parallels to “se-

mantic” maps in morphosyntax:

Morphosyntax : {sequences of morphemes} → {sets of meanings} (1.4)

There is ambiguity in form-meaning mappings in morphosyntax, too, especially

when we abstract away from relevant context (e.g. pragmatic and prosodic context

in morphosyntax maps; morphosyntactic context in phonological maps); more-

over, note that generalization from a finite data sample to an infinite language

occurs for both learning problems. One difference between the phonological and

morphosyntax maps is that phonological maps are defined in the real rather than

the discrete domain.3 Because of this, the mathematical machinery for studying

the two different kinds of maps can differ.4

Having explicated an example of a phonological map, we make a final im-

portant revision to our current working definition in (1.3), after Pierrehumbert

(2003a): we revise the range of the map to be over probabilities of category

membership rather than sets of categories:

3There are also approaches to studying morphosyntax that model morphosyntax maps as
being real-valued, cf. Widdows (2004): the co-occurrence of words in documents is used to
determine similarity of word meanings, measured in real-valued vector spaces.

4It is possible to define a discrete phonological map. In fact, one may argue that a phonologi-
cal map is most correctly modeled over a discrete space because of precision limits in computing
and biological systems (Blum, 2004; Blum et al., 1997).

15



Phonological map: {sequences of phonetic parameter vectors} → (1.5)

P1 × P2 × · · · × Pc

where each Pi ∈ [0, 1] is the probability that the vector is an instance of phono-

logical category Ci and there are c categories in total.

As an example for a particular mapping for vowels in 2-D formant space,

we move from classification into a set of phonological categories which pick out

subsets of 〈F1 SS ,F2 SS 〉 space:

〈F1 SS = 686,F2 SS = 1028〉 7→ {/A, O/} (1.6)

to a probability distribution of the categories over 〈F1 SS ,F2 SS 〉 space:

〈F1 SS = 686,F2 SS = 1028〉 7→ {p(/A/) = 0.45, p(/O/) = 0.55} (1.7)

Having defined the object of study for the thesis—phonological maps, and

in particular, tonal maps—we describe our strategy for studying these maps to

progress towards an assessment of the learnability of tonal maps in human lan-

guages.

1.1.3 Research questions

The initial step this thesis takes towards studying the acquisition of tonal maps is

to focus on studying the hypothesis space of the learner because we are interested
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in characterizing the structure of the hypothesis space to assess if the class of tonal

maps is feasibly learnable. Our strategy is to study properties of tonal maps in

a diverse sample of languages. These maps for particular languages give us an

indication of what possible tonal maps for human languages are. Based on what

we learn about the structure of the class of possible tonal maps from the maps

studied in the thesis, we then consider the learnability of this class.

The research questions we need to address to characterize tonal maps imme-

diately follow from the definition of phonological maps in (1.5). We may frame

the explication of these questions in terms of tonal maps due to the topic of the

thesis, but the questions are relevant for the study for any kind of phonological

map.

(Q1a) What kinds of phonological categories are to be represented in the

range of the map?

(Q1b) What is the phonetic parameter space—the space of phonetic param-

eter vectors—for the phonological categories defined in (Q1a)?

(Q1c) What are properties of the distributions of the phonological cate-

gories of (Q1a) over the phonetic parameter space of (Q1b)?

Phonological categories (Q1a) The choice of definition for the categories ref-

erenced in the range of the phonological map revolves around how contexualized

the categories are. Peperkamp et al. (2006); Pierrehumbert (2003a,b) argue for

the set to be a set of positional allophones, and for unification into phonemes us-

ing information from distributions of symbolic allophones or by using knowledge

of the lexicon; Dillon et al. (Unpublished) argues for the set to be phonemes.
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Another option is to define the codomain over phonological features (Lin and

Mielke, 2008; Mielke, 2008). We begin by restricting attention to tonal phonemes

as the phonological categories in this thesis.

Phonetic parameter spaces (Q1b) We characterize the domain of the phono-

logical map by motivating which phonetic parameters are most significant for

defining phonological categories; these are the dimensions that we want to de-

fine the distributions over to make progress towards understanding the structure

of the class of possible tonal maps. The set of phonetic parameters that may

be extracted from the speech signal is obviously infinite in size and therefore

must be constrained by some metric for computational tractability. For scientific

purposes, too, we seek to limit the dimensionality of the phonological map, i.e.,

the size of the parameter set, in order to have a succinct representation that

is intelligible to the human scientist (Occam’s razor). From the learner’s per-

spective, a succinct learning target prevents overfitting to the input data and

facilitates generalization to novel data (Duda et al., 2001, 8-10), (MacKay, 2003,

343–349); from our scientific perspective, a succinct characterization of phonolog-

ical maps facilitates our ability to understand how the learning proceeds. In the

best case, succinctness in the map results in no loss of information, i.e. without

any smoothing out of the distributional modes corresponding to category struc-

ture in the phonetic space;5 otherwise, the goal is succinctness with minimal loss

of information.

Our decision criterion for the problem of determining the appropriate parame-

terization of speech signal events in tonal maps, first introduced in the explication

5A simple example of succinctness without information loss is the expression of a finite
language as a finite state automaton rather than as a list, since it can take fewer symbols to
specify the finite state automaton than the list, and exactly and only the same sentences in the
language are expressed (Meyer and Fischer, 1971).
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of phonological maps in the previous section, §1.1.2, is therefore based on the sep-

arability of tonal categories in a particular phonetic parameter space.

We are in fact interested in characterizing three classes of phonetic parameter

spaces to answer (Q0′):

1. a universal parameter space U for all tone languages

2. the language-specific parameter space L for a given tone language

3. the speaker-specific parameter space SL for a given speaker of a given tone

language.

To review, by a parameter space, we mean the set of parameters over which the

space is defined; the inclusion of a parameter adds a dimension to the space. By

universal parameter space, we mean the smallest universal parameter space, the

space which includes exactly and only the union of all language-specific parameter

spaces.6

To a first approximation, we assume:

∀L,∀SL, U ⊇ L ⊇ SL. (1.8)

This entails that the universal parameter space U can draw more distinctions

than any tonal language-specific parameter space L, which can, in turn, draw

more distinctions than any speaker-specific parameter space for that language,

SL.

6The notion of a parameter space for all tone languages assumes that the class of tone
languages is definable as a subset of all natural languages. Whether the restriction of languages
to tone languages is available in acquisition is an open question, i.e. do children know they are
learning a tone language, and if they do, under what conditions do they do this, and how do
they do this?
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The assumption in (1.8) is motivated by the overarching idea based on em-

pirical work on infant speech perception development over the past few decades

that infants begin as “citizens of the world” in having a universal ability to

distinguish between sound categories and develop language-specific maps of the

acoustic space through exposure to language input (Kuhl, 2004). For instance,

one of the first results of this kind was that English-learning infants showed be-

havioral responses consistent with the ability to discriminate between a velar stop

(a sound in English) and a uvular stop (a sound not in English, but in Salish)

at 6-8 months of age, but that by 10-12 months of age, they did not anymore

(Werker and Tees, 1984). Subsequent work confirmed and built on these results

to flesh out a developmental timeline of perceptual reorganization of the acoustic

space in which:

• Infants show a decline in their ability to discriminate nonnative vowel con-

trasts between 4-6 months (e.g. Polka and Werker, 1994).

• Infants learning a non-tonal language show a decline in their ability to

discriminate lexical tonal contrasts between 6 and 9 months (Mattock et al.,

2008).

• Infants show a decline in their ability to discriminate nonnative consonantal

contrasts between 6-8 and 10-12 months (e.g Werker and Tees, 1984).

• Infants show improvement (facilitation) in their ability to discriminate na-

tive consonantal contrasts over the first years of life (Kuhl et al., 2006;

Sundara et al., 2006).

• Infants may be able to discriminate some native contrasts only after expo-

sure to native language input7 (Narayan et al., 2010).

7Based on results like these, an alternative assumption to (1.8) is that the universal param-
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• A nonnative contrast that infants show a decline in discriminating can be

learned by adult speakers of the same native language after significant ex-

posure to the nonnative language (Tees and Werker, 1984).

The cross-linguistic variability in the dimensions of acoustic spaces for phono-

logical contrast and distributions of phonological categories over these spaces, as

well as the change in the dimensions and distributions for infants due to lan-

guage input show that phonological maps must be learned from language input :

this has far-reaching ramifications for the status of the universality of phonolog-

ical features (defined over phonetic parameters) and thus also of the universality

of phonological constraints (referring to phonological features). It also under-

scores the need to study phonological maps using cross-linguistic data to answer

(Q0′) on page 10 and is a kind of reiteration of the fact that the learnability of

phonological maps can only be studied when we consider the structure of class

of possible phonological maps in human language rather than phonological maps

in a single particular language.

The empirical evidence that: (i) language learners show decline rather than

loss in sensitivity to particular phonetic dimensions, (ii) they can reactivate sen-

sitivity with later language exposure and training, and (iii) listeners show the

ability to use a wide variety of cues in degraded speech8 suggests that the model

eter space U can draw fewer rather than more distinctions than any tonal language-specific
parameter space L:

∀L, L ⊇ U . (1.9)

following the idea that sensitivity to some phonetic parameters may become activated only after
exposure to language input. We do not take this alternative assumption because there is, to
date, little supportive evidence for it. More importantly, a negative result for infant sensitivity
to a speech sound contrast is conditional on a given experiment using a given task. A positive
result is conditioned in the same way, as well, but shows that, at least under some conditions,
infants show sensitivity to the contrast, while a negative result does not imply that infants are
not sensitive to the contrast under any conditions.

8See Assmann and Summerfield (2004) for a general review of perception of degraded speech.
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of the development of language- and speaker-specific spaces of each language in-

volves parameter tuning/re-weighting rather than parameter selection. Even in

cases where sensitivity to some phonetic parameter may be vanishingly small,

the model should assign it a vanishingly small weight rather than remove the

parameter from the space.

Note that even for the purposes of studying the phonetic parameter space,

we must represent data with a set of initial parameters: this initial set should

be exactly U , which we assume to be a superset of the dimensions of L for any

natural tone language L, cf. (1.8), and which is a subset of the set of all acoustic

parameters we could extract from the speech signal. But these are not well-

defined lower and upper bounds on U ; we cannot know what U is before studying

what it should be! Thus, we make a guess and initialize the parameter set of

U based on cross-linguistic work on tonal production, perception, and automatic

tonal recognition.

The distribution (Q1c) We assume that the distribution of phonological cat-

egories over the phonetic space is continuous. Since the details of the distribution

depends strongly on how the phonological categories and the phonetic space is

defined, we let our study of those determine characteristics of the distribution.

These characteristics then inform how we constrain the type of distributions avail-

able in the hypothesis space for the learner in modeling the actual learning of

the phonological map—the structure of the distributions in the class of possible

phonological maps is what informs us about the learnability of the class.

(Q1a)–(Q1c), reiterated below, are questions that we ask of particular tonal
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maps.

(Q1a) What kinds of phonological categories are to be represented in the

range of the map?

(Q1b) What is the phonetic parameter space—the space of phonetic param-

eter vectors—for the phonological categories defined in (Q1a)?

(Q1c) What are properties of the distributions of the phonological cate-

gories of (Q1a) over the phonetic parameter space of (Q1b)?

The learnability of the hypothesis space (Q1d) To these, we add (Q1d),

a question about the class of possible tonal maps which we address after studying

tonal maps in a range of particular languages:

(Q1d) Considering the tonal maps of the languages studied as an indication

of the possible maps in human language, is the class of possible tonal

maps feasibly learnable?

As we mentioned in the overview, our definition of learnability is based on a

mathematically precise criterion for successful learning. The criterion we take

for learnability—more specifically, feasible learnability—is that the hy-

pothesis space of the learner must have finite Vapnik-Chervonenkis

(VC) dimension, a combinatorial measure of the complexity of the hypothesis
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space (Vapnik and Chervonenkis, 1971). VC dimension is often described in an

intuitive way as reflecting the rigidity or flexibility/wiggliness in the structure of

the hypothesis space (and in the capacity of learners for the hypothesis space).

For instance, the VC dimension of the class of ellipses in R2, like the approximate

shape of vowel concepts in Figure 1.1, is small and finite, while the VC dimen-

sion of the class of convex polygons (shapes including triangles, quadrilaterals,

ellipses. . .) in R2 is infinite (Blumer et al., 1989). VC dimension, as a combinato-

rial measure, can be calculated in discrete as well as real-valued spaces, and thus

serves as a unified metric for learnability in language for classes in phonology

and morphosyntax, e.g. context-free and context-sensitive languages, as well as

for concept classes in phonetics spaces such as tonal maps.

The criterion of finite VC dimension is a necessary and sufficient criterion for

probably approximately correct (PAC) learnability (Blumer et al., 1989) (and

more generally a class of learnability criteria including PAC learnability (Poggio

et al., 2004)). PAC learnability is a probabilistic criterion on successful learning

that does not demand exact convergence on the target, and thus is considered to

be a learnability criterion more relevant for human learning than stricter criteria.

It requires only that for a sufficiently large sample of data drawn according to

some distribution, the learner converge within arbitrarily small error with arbi-

trarily high probability on any target map for all maps in the hypothesis space

(Valiant, 1984).

Finite VC dimension is a property of the hypothesis space. Studying learn-

ability from the perspective of classes of algorithms may be a fruitful strategy if

we have a good understanding of the learning algorithms for the learning problem

in question (Poggio et al., 2004), but we focus on learnability from the perspec-

tive of structure in the hypothesis space because we know more about the tonal
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maps to be learned than the learning algorithms for them at this point in time.

1.1.4 Methodological abstractions

The focus of this thesis is working toward answering (Q1b), and in characterizing

the phonetic parameter space for tonal maps, we make four main methodologi-

cal abstractions, some of which we have already mentioned: (i) to sharpen the

probabilistic distributions of phonological categories into partitions over the pho-

netic space, (ii) to use category separability as a step towards constraining the

phonetic parameter space, (iii) to limit the context available for phonetic param-

eter extraction from the speech signal, and (iv) to introduce linguistic structure

into the unanalyzed speech signal. All of these abstractions are in addition to

the overarching abstraction to restrict the set of languages under study to tonal

languages, as described in Footnote 6 on pg. 19. Characterizing the phonetic

parameter space with these methodological abstractions in place still allows us

to bear on questions (Q1a)–(Q1d). We discuss each abstraction below.

Partitions over the phonetic space and category separability While

the reality is that phonological maps are probabilistic distributions of phonolog-

ical categories over the phonetic space, in characterizing the phonetic parameter

space, we make the methodological abstraction that maps are partitions of phono-

logical categories over the space: every point in the space maps to exactly and

only one phonological category.

The reason for the abstraction is that most well-understood computational

algorithms for classification give “hard” classifications, i.e. produce a partition of

the space, rather than a probabilistic distribution over it (Wahba, 2002). More-

over, while it is possible to elicit probabilistic confidence ratings in human per-
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ception experiments, e.g. using magnitude estimation (Bard et al., 1996; Keller,

2000), we use forced choice tasks in our perception experiments to match the

hard classification of the computational algorithms.

Along with the methodological abstraction of modeling phonological maps

with partitions, we use the an assessment of category separability to determine

how relevant/informative phonetic parameters are for defining the tonal cate-

gories in computational modeling: more informative phonetic parameters define

a space in which the tonal categories are better separated. As discussed by Nearey

(1989), this category separability metric is data analytic because it is based on

production data only, while ultimately, perceptual separability from listening ex-

periments, as well as articulatory separability from physiological experiments,

are also directly relevant for defining phonological maps. However, data analytic

category separability certainly bears on perceptual separability, and at this point

in time, we can make sharper conclusions from a data analytic perspective than

a perceptual one because we have a better understanding of the spaces used in a

data analytic approach.

Limiting context for phonetic parametrization We have already proposed

(1.2) restricting the domain of the maps to be learned to phonetic parameters. We

reiterate here that we are abstracting away from non-phonetic context, e.g. mor-

phosyntactic information (the language model in automatic speech recognition),

to constrain the research problem; Jansen (2008) calls this the “pure speech”

setting. Moreover, we restrict the temporal domain for phonetic parameter ex-

traction. The strongest such restriction is to restrict the extraction of phonetic

parameters to only the unit to the classified, e.g. only from the syllable of the

tone to be classified. Unless otherwise specified in the thesis, we start from this

restriction, and in the immediately following chapter, Ch. 2, we study the effect
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of that restriction and allow extraction from the preceding and following syllables

as well. For fluent speech recognition by humans, there is strong evidence that

humans extract parameters from temporal domains wider than the unit to be

classified, e.g. Ladefoged and Broadbent (1957); Wong and Diehl (2003).

Introducing linguistic structure in the speech signal While the original

research question (Q0′) assumes extraction of parameters from the unanalyzed

signal, for this paper, we extract parameters from speech segmented for syllabic

structure for convenience. This is like having an oracle tell the classifier where

syllable boundaries or onset/rime boundaries are. In future work, we can remove

this extra information by implementing a sonority detector to find syllables, as

in Jansen (2008).

1.2 The model system for the acquisition of lexical tones

With the larger research questions and the methodological abstractions set up,

we turn to the model system under study.

The gross characterization of our model system for the thesis is this:

• Data: monotones, bitones, and tritones extracted from sentence-medial

position in connected speech and in isolation over a cross-linguistic tonal

language sample

• Phonetic parameter space: an acoustic parameter space, with parame-

ters extracted from the speech signal, used to represent the data

• Phonological categories: lexical tonal phonemes (tonemes)

Like any other system studied in phonological category acquisition, the one
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we study here is a model system, and we study it with the same scientific mo-

tivation that a biologist studies a simple model organism like baker’s yeast (the

eukaryote with the smallest number of genes) to illuminate gene regulation in

more complex systems such as humans (Fields and Johnston, 2005). Clearly the

model system can only capture certain aspects of the process of phonological cat-

egory acquisition, highlighting some while muting others (§1.3). In this section,

we describe how we instantiate the model system for lexical tone acquisition to

answer (Q0′).

Our research questions, as laid out in §1.1, dictate the following requirements

for setting up a model system for studying lexical tone acquisition:

• A representative cross-linguistic sample to address the language-specific

development of speech categorization and to reveal potential structure in

the class of possible tonal maps for assessing learnability

• A language sample relevant for modeling language input to infants

• Some controlled source(s) of variability to enable modeling the challenge of

categorization in the face of variability

Cross-linguistic tone language sample We chose a sample of tonal lan-

guages to include: (i) a register/level tone language, with only level tones (Bole),

and (ii) contour tone languages with contour tones and level tones (Mandarin,

Cantonese, Hmong), as well as languages with a variety of tone-voice quality

interactions.

While Bole is not known to have any such interactions, both Mandarin and

Cantonese have noncontrastive phonation, i.e. tone-voice quality interactions oc-

cur, but f0-based cues are thought to be sufficient to distinguish between all
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tones. Mandarin has creaky phonation particularly in its dipping tone (Hockett,

1947; Chao, 1956; G̊arding et al., 1986; Klatt and Klatt, 1990; Davison, 1991;

Belotel-Grenié and Grenié, 1997), and Cantonese has anecdotally been claimed

to have a creaky low fall (Vance, 1977). Hmong has a laryngealized low tone and

a breathy fall (Esposito et al., 2009; Andruski and Ratliff, 2000; Huffman, 1985).

Moreover, in White Hmong, the dialect of Hmong we investigated, there is pro-

duction evidence that breathy phonation is contrastive for female speakers: both

the modal and breathy high fall can have very similar f0 contours and heights

(Esposito et al., 2009).

We summarize the diversity of the cross-linguistic tonal language sample be-

low in Table 1.2, using International Phonetic Alphabet notation for the tonal

inventory, and give recording details of the data currently available below in Table

1.3.

In our perceptual experiments in Chs. 4, 2 and 3, we used Cantonese tones

as our system of study. This was for two reasons. First, Cantonese contains level

and contour contrasts, and thus can inform us about tonal representations for

more tone languages than a language with only dynamic contrasts like Mandarin

(level, rise, fall, dip) or Bole (level contrasts only). Second, because behavioral

experiments require a ready supply of subjects, we chose Cantonese for practical

reasons, as it is reasonably easy to find native speakers of Cantonese to participate

in experiments.

Language input to infants and sources of variability Because infants

tune into native language sound categories before they begin to produce native

language sounds (Werker, 1994; Best, 2003; Kuhl, 2004), we restricted parameters

to acoustic parameters and abstracted away from articulatory parameters as a
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Language Area Tonal inventory Phonation

Bole Nigeria
Ă
£, Ă£ (H,L)

Mandarin Beijing, Taiwan
Ă
£, Ę£, ŁŘ£, Ď£ creaky ŁŘ£, Ď£

Cantonese Hong Kong
Ă
£, Ă£, Ă£, Ą£, Ğ£, Ě£ creaky Ą£

Hmong Laos/Thailand
Ă
£, Ă£, Ă£, Č£, Ć£, Ą£, Ę£ breathy Ć£, creaky Ą£

Table 1.2: Cross-linguistic sample of tonal languages recorded to provide language

input

Language Dialect Recording location Speakers

Bole Fika Potiskum, Nigeria 3M/2F

Mandarin Beijing Beijing, China 6M/6F

Cantonese Hong Kong/Macau Los Angeles, CA 6M/6F

Hmong White Fresno, CA 6M/5F

Table 1.3: Details for recordings of language sample

methodological abstraction.

Other work on learning tonal categories has emphasized that the majority

of the input to the infant consists of multiple words so that contexual variation

due to tonal coarticulation from neighboring tones is a regular part of the input

the learner receives (Gauthier et al., 2007; Shi, in press). Specifically, Gauthier

et al. (2007); Shi (in press) claim that about 90% of parental speech to infants is

multi-word utterances. Moreover, the majority of language data an infant hears

is not speech directed to the infant, but, for instance, adult-to-adult speech. An

estimate from van de Weijer (1998, 2002) is that only about 14% of the input is

direct speech to the infant.

Because of the large amount of input that infants hear that is adult directed

speech and multi-word utterances, Gauthier et al. (2007) modeled learning tone
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categories based on speech from adults rather than infant-directed speech, (and

in general, research building tone recognizers is modeled on adult speech). This is

of course a working hypothesis; surely the presence of infant directed speech and

isolated words in the input could affect the character of the learning problem.9 We

follow this choice, taking our input to the learner to be adult connected speech.

We capture the role of contextual tonal variation in creating variability in the

input by collecting the full permutation set of bitones in connected speech for

each language in the sample, and we capture interspeaker variation by recording

multiple speakers of both genders. We use language samples of this kind in all

our perceptual experiments (Chs. 2, 3, and 4) and in our computational modeling

(Chs. 2, 4, and 5).

1.2.1 Stimulus sets

The stimulus sets for each language were recorded as all possible bitone combi-

nations in the language, in connected speech. For all languages, we attempted

to elicit these bitone targets as CVCV (or CDCD, D for diphthong) sequences.

For the African languages, the bitone targets were disyllabic words; for the Asian

languages, they were (mostly) nonce disyllable sequences of identical CV/CD

syllables. In order to produce smooth f0 tracks, we selected sonorant consonants

whenever possible; in order to produce segmentable speech, we selected nasals

9For instance, note that the rationale for the ecological validity of adult connected speech
given above assumes equal weighting in infant attention to all input regardless of whether it is
directed to the infant. In fact, studies show biases for infant directed speech over adult speech
and biases for the infant for their mother’s voice and the importance of placing language input
within social interaction (Kuhl et al., 2003). Thus, it is not unreasonable to hypothesize that
despite the relatively small amount of infant directed speech in the ambient input, it may
be a rich source of information for infants about learning tone patterns. In fact, work has
found correlation between the amount of exaggeration in infant directed speech in terms of the
expansion of the vowel and tonal spaces in predicting an infant’s ability to discriminate native
consonant contrasts (Liu et al., 2003; Xu and Burnham, submitted).
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and laterals rather than liquids and glides, when possible (Xu, 1997). In order to

facilitate reliable voice quality measures, we selected low vowels when possible,

mostly [a], since when F1 becomes low enough to interact with f0, the voice qual-

ity measurements reliant on accurate formant estimation are not reliable. Within

a language, with the exception of Igbo, only one vowel or diphthong was used in

the stimuli to control for and abstract away from intrinsic f0 effects.

We recorded the bitones in sentence-medial position, flanked by surrounding

tones. For languages with a large tonal inventory, such as Cantonese and Hmong,

we kept these constant at the mid level tone in the inventory. In the other

languages, we elicited the bitones in a variety of tonal frames, as detailed below.

The stimuli described below were used in cross-linguistic computational mod-

eling, described in Ch. 5, and the Cantonese stimuli were used for perceptual

experiments on creak in Cantonese tonal representation (Ch. 3), and very similar

stimuli were also used for the other Cantonese perceptual experiments in Ch. 4

and 2.

1.2.1.1 Bole

Factor Levels

ToneS1 L, H

ToneS2 L, H

Context H H, H L, L H, L L

Prosodic pos. Controlled as sentence-medial

Segmentals Mixed vowels, mixed sonorant consonants

Other elicitation Citation, isolated disyllables, monosyllables in context

Table 1.4: Factors in Bole corpus
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Segments Tones Gloss

lala HH spider

mono HL cobra

yaro LH bird

nema LL prosperity

Table 1.5: Bole targets

• Contexts:

– Left contexts: nzono LH ‘yesterday’, tuwwa HH ‘day after tomorrow’,

anin HH ‘owners’

– Right contexts: mengo HL ‘come back’, mai L ‘return’

• Morphosyntax: Subject DP after time adverb or object in genitive con-

struction

1.2.1.2 Mandarin

Factor Levels

ToneS1
Ă
£, Ę£, ŁŘ£,Ď£

ToneS2
Ă
£, Ę£, ŁŘ£, Ď£, (and neutral tone)

Context L L, L H, H L, H H

Prosodic pos. Sentence-initial, medial, final

Segmentals All targets [ma]

Table 1.6: Factors in Mandarin corpus

• Targets: disyllable combinations of all four tones on [ma]
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• Contexts:

– Sentence-initial: # [jau]{Ę£,Ď£}

– Sentence-medial: [jau]{
Ă
£,Ď£} [mai]{Ę£,Ď£}

– Sentence-final: [jau]{
Ă
£,Ď£} #

1.2.1.3 Cantonese

Factor Levels

ToneS1
Ă
£, Ă£, Ă£, Ą£, Ğ£, Ě£

ToneS2
Ă
£, Ă£, Ă£, Ą£, Ğ£, Ě£

Context Controlled as Ă£ Ă£

Prosodic pos. Controlled as sentence-medial

Segmentals All targets [lau]

Other elicitation Citation, isolated disyllables

Table 1.7: Factors in Cantonese corpus

• Targets: disyllable combinations of all six tones on [lau]

• Contexts: [jEu] Ă£ [jaak] Ă£ (Mid checked)

– Three instances of same tonal context frame: [jaak jœN] ‘eat sauce’,

[jaak sou] ‘eat vegetarian’, [jaak gap] ‘eat pigeon’

1.2.1.4 White Hmong

• Targets: disyllable combinations of all 7 tones on [la]

• Contexts: cia ya
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Factor Levels

ToneS1
Ă
£, Ă£, Ă£, Č£, Ć£, Ą£, Ę£

ToneS2
Ă
£, Ă£, Ă£, Č£, Ć£, Ą£, Ę£

Context Controlled as Ă£ Ă£

Prosodic pos. Controlled as sentence-medial

Segmentals All targets [la]

Other elicitation Citation, isolated disyllables

Table 1.8: Factors in White Hmong corpus

– Two instances of same tonal context frame (mid tones on left and

right): ya mus tov ‘fly there’ and ya mus tsev ‘fly home’

1.3 Reflections on the model system

We conclude this introductory chapter with reflections on the model system we

have described. First, we consider limitations of the model system for under-

standing the acquisition of phonological categories §1.3.1. Then, we consider

what properties of the phonetic parameterization of phonological maps we can

investigate with our model system in comparison to previous model systems for

learning phonological categories and describe which issues we focus on in this

thesis in §1.3.2.

1.3.1 Limitations of the model system

There are many sources of variability in the acoustic realization of tone. The

emphasis on contextual tonal variation in the collected data mostly restricts the

source of variability in the phonetic realization of tones in our model system to
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tonal coarticulation. Because we recorded multiple speakers and genders, our

model system also includes interspeaker variability. However, the interaction

of tone and intonation is not emphasized in the data, other than implicitly in

language-specific implementations of downtrend; we did not consider the effect of

prosodically realized focus or other pragmatically-conditioned effects on f0; we did

not systematically vary pitch range of an individual speaker, as in Liberman et al.

(1992); Liberman and Pierrehumbert (1984); with our “pure speech” setting, we

abstracted away from tonal interactions with morphophonology/syntax, including

the rich grammatical function of tone in many tone languages. Moreover, the size

of our speech corpora is tiny—at least one or two orders of magnitude smaller than

speech corpora used in automatic speech recognition—and it consists of controlled

laboratory speech rather than semi-spontaneous or spontaneous speech.

Because the variability in the input data recorded in our corpora may be a

small subset of the variability characteristically present in input that an infant

might hear, while the sample size of data given by our corpora is small compared

to the amount of data available for inducing phonological categories in human

learners, it is not possible to say whether analyses based on our corpora are likely

to give an upper or lower bound on how well tonal categories are separated in a

given phonetic space. How closely the settings of the learning problem in our work

match that of the real situation is an open empirical question, but converging

results on learnability from our work with multiple sources with different settings,

e.g. from automatic tonal recognition, human tonal perception studies, and infant

behavioral research would suggest that our model system provides a reasonable

characterization of the learning problem.
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1.3.2 The model system as a model system for phonological category

acquisition

Our model system and methodology for modeling phonological category acquisi-

tion is unusual in several respects. First, we precede study of learning phonolog-

ical maps with study of the maps themselves using supervised learning methods,

where the phonological classification algorithm receives phonetic data labeled

with which phonological category it is an instance of. Other phonological cat-

egory learning studies, cf. Table 1.9, have bypassed this initial step and only

studied the learning of the map using unsupervised learning methods, where the

learning algorithm receives unlabeled phonetic data.10

Results from unsupervised learning simulations are obviously conditioned on

how the learning problem is set up. As an illustration, in Bayesian models of

phonological category acquisition, Bayes’ rule for statistical inference for poste-

rior beliefs about model parameter values after observing data (evidence), given

informally as:

posterior =
likelihood × prior

evidence
(1.10)

and more formally, with data D and hypothesis θ for model parameter values as:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.11)

can always be rewritten using the chain rule to make the conditioning of each

term in the equation on the model of the learning problem M explicit:

10For vowel learning, there is a body of supervised learning work studying categorical sep-
arability conditioned on different phonetic parameter spaces, e.g. Hillenbrand et al. (1995);
Hillenbrand and Gayvert (1993); Nearey (1992), but this has not been referenced by the unsu-
pervised learning studies.
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P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
(1.12)

Second, most studies of phonological category learning from the speech signal

have focused on learning vowels (de Boer and Kuhl, 2003; Feldman et al., 2009;

Dillon et al., Unpublished; Vallabha et al., 2007); some have modeled learning

stop voicing (Toscano and McMurray, 2010) or an entire segmental phonemic

inventory (Lin, 2005); only one has studied learning suprasegmentals, learning

Mandarin tones (Gauthier et al., 2007) (Table 1.9).

Tones as phonological categories also have a different status from phonological

categories such as vowels because tones are lexically contrastive, while vowels are

sublexical, and the characterization of phonological feature systems for tones is

not well understood, compared to that that for vowels and consonants (Hyman,

2010). Despite being an unusual system to study in phonological learning, our

lexical tone model system allows the study of parameterization issues common to

many phonetics-phonology maps (§1.3.2.1), as well as some particular to lexical

tone maps (§1.3.2.2).
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1.3.2.1 Common parameterization issues shared by lexical tone and

other systems

In this section, we discuss parameterization issues common to many model sys-

tems of phonological maps that we can study with our model system.11 Following

Nearey (1989), we distinguish three classes of properties: (i) static, (ii), dynamic,

and (iii) relational, and further subdivide relational properties into intrinsic (in-

trasegmental) and extrinsic (transsegmental) properties. For any model system,

the relative contributions of these different classes of properties to category sep-

arability is of interest. For vowel systems, Nearey (1989) suggests that all three

classes of properties contribute to separability and perception. Of special atten-

tion in this thesis are two types of properties: contextual temporal domain and

sampling resolution, studied in Chs. 2 and 4, respectively.

Static properties Static properties are properties such as steady-state formant

frequencies, extracted from the speech signal from a region where their rate of

change is vanishingly small. They could also include mean values over the unit

of speech presented as a data example, e.g., mean f0 over the syllable, mean F1

over the vowel, or spectral mean over the fricative (Jongman et al., 2000). Note

that about half of the studies in Table 1.9 include only static properties in the

parameterization of the speech signal.

Dynamic properties With the exception of Ch. 5, we confine our parame-

ters to dynamic properties in the thesis. Dynamic properties include change in

formant frequencies over a vowel (vowel inherent spectral change, VISC (Nearey

and Assmann, 1986)), change in f0 over a tone, or change in spectral mean or

11Consonantal model systems have some nonoverlapping parameterization issues due to the
transient character of consonantal acoustic realization.
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kurtosis over a fricative, as well as coarticulatory effects from neighboring units

of speech, such as contextual effects on formant frequencies from consonants and

contextual tonal effects from neighboring tones. Dynamic properties are in fact a

special class of relational properties (other classes are described next) where in-

formation is spread across time, across multiple time points/time slices; they are

defined by sampling of timecourses, either within the unit of speech, or extending

to neighboring units of speech for contextual effects. In this thesis, the dynamic

properties we use in computational modeling are mean f0 values extracted over

time slices uniformly over the syllable and the changes between these.

Intrinsic relational properties Intrinsic relational properties are properties

derived from quantities measured at the same timepoint or averaged over the

same time slice within the speech unit, e.g. within the vowel, or within the tone,

such as steady state formant ratios or spectral balance measures, e.g. H1 −H2

(the difference between the amplitude of the fundamental frequency spectral peak

and the amplitude of the second harmonic peak, taken at a timepoint or averaged

over a time slice). We do not use these kinds of parameters in this thesis.

Extrinsic relational properties However, we do study extrinsic relational

properties, which are quantities measured for a speech unit that are relativized

using an overall frame of reference such as the ensemble of all formant measure-

ments from a given speaker, such as relative formant values or relative f0 within

a speaker’s pitch range. Extrinsic relational properties include parameterization

under normalization procedures: “explicit methods that attempt to factor out

systematic, but phonetically nondistinctive, covariation in signal properties, and

thus to reveal more invariant patterns separating phonetic categories” (Nearey,

1989, 2090). Such procedures include the Chao tone value notation system of five
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relative pitch levels within a given pitch range (Chao, 1930), or more generally,

z-score normalization of frequencies based on the mean and variability over some

ensemble of measurements (Rose, 1987), e.g. over the speaker or a particular

vowel or tone category. Whether normalization procedures have a psychologi-

cal basis or not is an open empirical question. In this thesis, preprocessing for

computational modeling in Chs. 4 and 2 involves z-score normalization based

on speaker-specific means and standard deviations. The misfit between human

behavior directly observed for the same stimuli does not provide evidence for a

psychological basis for z-score normalization of this kind in humans.

Similar to normalization transforms, distance metric transforms are trans-

forms that do not rely on a particular frame of reference as for extrinsic relational

properties; rather, they involve a transform in the scaling of distances. Common

nonlinear distance metric transforms are the log and perceptually-based log-like

distance metric transforms (erbs, semitones, bark); the effect of these transforms

on category separability is complicated and interacts with the classifier algorithm

specification (Hillenbrand and Gayvert, 1993). In this thesis, we do not study

this, but assume that log-transformed f0 values are perceptually motivated and

use them in computational modeling.

Contextual temporal domain The specification of dynamic properties ex-

tending to neighboring units of speech for contextual effects requires parameter

extraction from those neighboring units. The extent of the contextual temporal

domain sets an upper bound or “window size” for parameter extraction. From

studies such as Ladefoged and Broadbent (1957); Wong and Diehl (2003) showing

how preceding context biases perception for vowels and level tones, it is clear that

the contextual temporal domain must extend to neighboring units, although the

studies in Table 1.9 on page 39 abstract away from this extension. We study the
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contextual temporal domain in tonal representation in humans and in machine

classifiers in detail in Ch. 2, using Cantonese tones as a case study.

Sampling resolution and related properties Multiple samples from time-

courses are needed for the parametrization of dynamic properties, e.g. samples

from the timecourse for the first formant for dynamic information about F1.

Three properties controlling the sampling are the sampling resolution, clock, and

adaptiveness. The sampling resolution controls how sparse or dense the sampling

is while the clock and adaptiveness of sampling control the sampling rhythm.

Sampling with a clock running on absolute time means sampling at some resolu-

tion at fixed intervals milliseconds apart; sampling with a clock running on syl-

lable time means sampling at some resolution at fixed syllable fraction intervals,

e.g. every tenth of a syllable. The sampling also need not be regular based on the

clock, but could be adaptive: denser during regions of rapid change, or occuring

only at landmarks, such as turning points (maxima, minima) in the timecourse

(Stevens, 2002). These temporal properties are generally not discussed in the

linguistic literature, which focuses on static properties, but they are sometimes

discussed in automatic speech recognition (Jansen and Niyogi, to appear; Tian

et al., 2004). Note that the studies in Table 1.9 including dynamic information

in the representation all employ dense, fixed-rate sampling. We study temporal

resolution in tonal representations in detail in Ch. 4. We assume uniform, non-

adaptive sampling on a syllable-timed clock, a methodological abstraction, and

consider the effect of sampling resolution on the separability of tonal categories

in humans and machine classifiers, using Cantonese tones for a case study.
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1.3.2.2 Representational issues special to lexical tone

Lexical tone systems also bring other representational issues to the forefront: one

is a reflex of how tone is produced articulatorily and the other is a reflex of the

temporal properties of tonal representation.

The voice source Unlike any of the other systems of contrast studied in Table

1.9, tone contrasts are regulated largely independently through the voice source,

the glottis, according to the source-filter model of Fant (1960). In contrast,

vowel and consonant contrasts, other than voicing contrasts and contrasts in-

volving pitch such as in Korean stops, are, to a first approximation, regulated

independently through the manipulation of vocal tract resonances filtering the

voice source (Fant, 1960).12 An example of this near-independence is that for-

mant trajectories give resonance information (about the filter), while f0 tracks

give periodicity information (about the source). As was implicit in §1.2, the

consequence of tonal contrasts being regulated through the voice source is that

phonetic spaces for tonal maps involve other source parameters than fundamen-

tal frequency, which is just one property of voice quality. However, the tonal

study Gauthier et al. (2007) listed in Table 1.9 represents tones without voice

quality information other than f0, and the same situation is true in automatic

speech recognition (other than amplitude-related parameters), with the exception

of Surendran and Levow (2008)’s work on tonal recognition using voice quality

parameters.

Local temporal domain For segmental phonological categories, the unit of

speech is easily defined as the temporal extent of the segment: a vowel is locally

12However, see Esling (2005) for an example of work on the laryngeal specification of vowels.
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defined over its own temporal extent. However, the local temporal domain for the

definition of tones is not as straightforward, and there are different assumptions

that can be made regarding it. Generally, it is assumed that the domain is no

larger than a syllable. Other assumptions for the domain account for the fact

that there is no f0 information in voiceless regions of the speech signal, and

that such voiceless regions may be present in the onset of a syllable; thus, other

assumptions for the local domain are the rime, the vowel, or voiced regions, cf.

Table 1.10. For this thesis, we used data from all-sonorant syllables and assumed

a local temporal domain of the syllable.
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For the studies in Table 1.9, the fact that the unsupervised learner imple-

mented was able to learn the phonetics-phonology map of the model system is

an existence proof that the learning target, e.g. the vowel system, is learnable in

some sense. However, the settings for the model systems for these studies render

them unable to account for well-known facts of human perception. For instance,

all the model systems employing purely static steady state/mean formant param-

eters do not capture the fact that humans are able to identify vowels with only

two short initial and final portions from the vowel as well as vowels with only the

steady state central vowel region present (Strange et al., 1983). Similarly, if Poep-

pel (2003) is right that neuronal mechanisms chunk the speech signal into 20-40

ms and 150-250 ms temporal integration windows, the model systems based on

densely sampled timecourses oversample relative to the maximum temporal reso-

lution relevant for human cognition. By considering the parameterization issues

discussed in this section by using human perception experiments in Cantonese as

a case study and computational modeling in a range of tonal languages, we can

situate models of learning tonal maps to be maximally relevant for understanding

how humans learn them.
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CHAPTER 2

Temporal domain in tonal representations: a

case study with Cantonese tonal perception

2.1 Introduction

The classic phenomena we study to understand the nature of phonological repre-

sentations in language are allophonic variations—the variability in the realization

of a phonological form due to contextual influences—and alternation—the rela-

tions between these variants (Kenstowicz and Kisseberth, 1979; Hayes, 2008).

This chapter addresses both these issues for the phonological representation of

lexical tones from a perspective informed by automatic tonal recognition, using

evidence from a human tonal perception experiment and computational modeling

in Cantonese.

To recognize the tone associated with a syllable in the face of allophonic vari-

ation, automatic tonal recognizers that operate on connected speech are regularly

given access to acoustic parameters from neighboring syllables (Chen and Wang,

1995; Zhang and Hirose, 2000; Zhang et al., 2000; Levow, 2005; Peng and Wang,

2005; Qian et al., 2007; Surendran, 2007). In addition, in automatic speech recog-

nition for Chinese languages, the citation form of a tone—its form uttered in an

isolated monosyllable (Chen, 2000, 49)—is often treated as definitional and im-

plicitly as a privileged base from which other contextual variants of the tone are
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derived. The tonal inventories of Chinese languages are typically defined over

citation forms, using iconic or 5-level Chao tone letters (Chao, 1930), and Man-

darin Tone 4 is standardly defined as a fall, as it appears in isolation, even though

there are contexts in which it may appear as a rise (Shih and Kochanski, 2000).

Two examples of Mandarin automatic tonal recognition systems that implic-

itly treat citation forms as privileged bases are the Stem-ML model (Kochanski

et al., 2003) and the tone nucleus model (Zhang and Hirose, 2004). The Stem-ML

model of Mandarin intonation takes as a starting point that all allophonic tonal

variants are generated from lexical tonal templates and are distorted from these

templates to a degree determined by their prosodic strengths (Kochanski et al.,

2003), and the tone nucleus model for Mandarin tonal recognition attempts to

extract parameters from the “tone nucleus” of each syllable, which represents

underlying pitch targets corresponding to those in the citation form (Zhang and

Hirose, 2004).

The use of acoustic parameters from preceding and following syllables and the

privileged treatment of isolation forms in automatic tonal recognition systems

raise cognitive issues about tonal representation. First, it is well known that

preceding context both informs and biases tonal perception, but much less is

known about the effect of following context. For instance, Wong and Diehl (2003)

found that the fundamental frequency (f0) level of preceding syllables strongly

biased the perception of level tones in Cantonese, and Chapter 3 shows that the

f0 level of the preceding syllable also biases tonal identification in a forced choice

task between the lowest level tone (Ă£) and fall (Ą£) in Cantonese; Huang and Holt

(2009) also found that average f0 of preceding syllables affected the perception

of the rise, a contour tone, in Mandarin (and see refs. within Wong and Diehl

(2003) and Huang and Holt (2009) for many other studies of preceding context).
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However, few tonal perception experiments have tested the effect of following

context—in fact, few speech perception experiments at all have tested this (Lotto

and Holt, 2006, p. 179); after all, speech perception unfolds in a forwards direction

in time. The only one we know of for tonal perception is Gottfried and Suiter

(1997), a small experiment with 5-6 listeners, which found that Mandarin listeners

made fewer identification errors when the syllable to be identified was presented

with a following syllable than without. Two studies, Xu (1994), and Francis

et al. (2006), tested the effect of preceding and following context together, but

not the effect of either context independently. Xu (1994) found that Mandarin

listeners identified tones in “conflicting” contexts (coarticulated contexts in which

the allophonic variant of the tone had a different f0 direction than in citation

form) with much higher accuracy when presented in context with preceding and

following syllables relative to when the flanking syllables were replaced with white

noise. Francis et al. (2006) found that Cantonese listeners had sharper tonal

identification boundaries between level tones when their sentential context was

present (including both preceding and following context).

As far as we know, the only work comparing following and preceding con-

text in tonal classification by human or machine is Levow (2005)’s automatic

tonal recognition study of the effect of including preceding (left) vs. following

(right) contextual parameters on automatic tonal recognition accuracy in Man-

darin, which found that preceding context improved overall tonal recognition

accuracy more than following context by around 5%. Levow (2005) writes that

these results are “consistent with current linguistic theory which claims strong

persistence or carryover effects in tonal coarticulation and only very weak antici-

patory ones”. Indeed, Xu (1997) found that left-to-right carryover coarticulation

is stronger than right-to-left anticipatory coarticulation in the production of Man-

darin bitones, and this has also been found in production studies of Cantonese
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bitones (Li et al., 2002; Flynn, 2003; Wong, 2006). However, we add to Levow

(2005)’s interpretation of results that it is not clear that stronger carryover than

anticipatory coarticulation implies that preceding acoustic context is uniformly

more informative than following acoustic context for tonal classification: it de-

pends on how one defines what information is associated with what linguistic

unit, and how informativity is measured. For instance, if we define f0 values

as being associated with a rise in a particular syllable if they show a positive

velocity and are within a local temporal window defined with some bound, then

the following acoustic context might share more mutual information (Cover and

Thomas, 2006, p. 19-20) about the syllable of interest than the preceding, since

the final ascent to peaks associated with rises is known to be delayed to the fol-

lowing syllable (Silverman and Pierrehumbert, 1990). Thus, it is of interest to

compare tonal classification with preceding vs. following context available to the

listener.

The second cognitive issue raised from automatic tonal recognition is whether

the perspective of a special status for tones in isolation in Mandarin tonal recog-

nition systems is useful for understanding the cognitive status of alternation in

lexical tones in general. One reason that citation tones are taken to be underlying

in the analysis of many Chinese tonal systems is that it is in isolation that the

most contrasts are preserved, while tones merge in connected speech (Chen, 2000,

49). A natural question then is: are tones in isolation more perceptually distinct

than tones in connected speech? There is a tension here: on the one hand, higher

than 90% accuracy has been achieved in speaker-independent tonal recognition

of isolated Mandarin tones using Hidden Markov Models (Yang et al., 1988) and

automatic tonal recognition in connected speech is considered to be much more

challenging than for isolated forms (Zhang and Hirose, 2004)—but there is also

the intuition that “the most severe test of the phonological distinctiveness of
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tonal features would seem to be in the context-free condition of isolated mono-

syllabic words” (Abramson, 1972, 33). The Mandarin tonal inventory lacks level

tone contrasts, but most tone languages have at least one level tone contrast

(Maddieson, 1978). For tone languages with level contrasts, the lack of context

in isolation would be expected to make perceptual normalization difficult, espe-

cially in speaker-independent tonal perception. Previous studies have compared

tonal perception of monosyllables in connected speech and these monosyllables

presented with neighboring syllables, e.g. Ma et al. (2005, 2006); Francis et al.

(2006), but they have not studied tonal perception of monosyllables in isolation

compared with tonal perception in connected speech.

To investigate the role of following context in tonal perception, and to com-

pare the perception of isolated tones to tones extracted from connected speech,

we performed a speaker-independent tonal perception experiment in Cantonese

manipulating the context available to the listener and computationally modeled

the listener’s task in an acoustic space. We chose to study speaker-independent

rather than speaker-dependent tonal perception because phonological categories

traditionally are not conditioned on speaker identity, and we were interested in

studying how much local acoustic contextual information and the potentially

higher separability of tones in isolation would help listeners in this more chal-

lenging task. We chose Cantonese for the ease of finding a sample of speakers

large enough for the experimental design and because the six tones of Cantonese

comprise a good exemplar tone inventory in having both level (high level Tone 1,

55,
Ă
£; mid level Tone 3, 33, Ă£; low level Tone 6, 22, Ă£), rising (high rising Tone 2,

35/25,Ę£/Ğ£; low rising Tone 5 23/13, Ě£/Ę£), and a falling tone (Tone 4, 21, Ą£), cf.

Figure 2.1 (Matthews and Yip, 1994).1.

1Some descriptions also distinguish these tones from the shorter entering tones (high, mid,
and low level) which occur in syllables with unreleased stop codas.
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We asked: (i) Can following context be as informative as preceding context,

and is it informative in the same way?, and (ii) How does tonal perception com-

pare for isolated tones vs. tones from connected speech? We hypothesized that

following context could improve tonal accuracy for contour tones, where there

might be peak delay—when a f0 peak for a tone associated to a given syllable

is realized following that syllable (Myers, 2003; Silverman and Pierrehumbert,

1990)—and that tonal perception in isolation would be worse for level tones than

in connected speech, provided that contextual information was made available

to the listener for perceptual normalization in connected speech. The rest of the

paper is comprised of descriptions of the following: the speech materials used

in the perception experiment and computational modeling (§2.2), the perception

experiment (§2.3), and the computational modeling (§2.4). It concludes with a

general discussion (§2.5).

2.2 Speech materials

2.2.1 Recordings

The stimuli were recorded by ten native Cantonese speakers, five of whose record-

ings were further processed for the rest of the study: these three males and two fe-

males were chosen to span overlapping pitch ranges over a wide overall range to be

representative of the challenge of interspeaker variability in speaker-independent

tonal recognition, also the task studied in the most recent automatic Cantonese

tonal recognizers (Peng and Wang, 2005; Qian et al., 2007), cf. §2.2.3, Table 2.1

for range information. One of the speakers was born and raised in Macau and

recorded in the phonetics lab sound-attenuated booth at University of California,

Los Angeles. The other four were born and raised in Hong Kong and recorded in
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the phonetics lab sound-attenuated booth at the City University of Hong Kong.

The speakers were recruited from the local university student population and re-

ceived cash compensation. All were recorded digitally at 22,050 Hz/16 bits with

PCQuirerX (Scicon R&D, Inc.) or at 44.1kHz/16 bits with a digital recorder.

The stimuli were created from: (i) the citation/isolation form of all six tones

over /wai/, one of the few sonorant syllables over which all tones are familiar real

words, and from connected speech, (ii) the tritone 〈waiĂ£, {wai
Ă
£, Ę£, Ă£, Ą£, Ę£, Ă£} , matĂ£ 〉

(wai33 wai mat3) extracted from sentences of the form: lei25/35 yiu33 wai33 wai

mat3 deng/geng33 ‘you want wai-wai to clean the lamp/mirror ’ with the target,

the second /wai/, ranging over all six tones Tone 55 to Tone 22. A sonorant sylla-

ble was chosen so that the f0 contours could be analyzed over the entire syllable.

The lexical meanings of the orthographic characters used to label the tones Tone

55-Tone 22 were, respectively, ‘power’, ‘appoint’, ‘fear’, ‘surround’, ‘great’, and

‘stomach’, and speakers were asked to treat /wai wai/ as a (nonce) proper name.

The orthographic characters, which were the same for both eliciting recordings

and the perception experiment, were chosen to be the most familiar ones for each

tone by a native speaker. Each speaker recorded 5 fluent repetitions each of the

citation tones, and of sentences containing all 36 bitone combinations over /wai

wai/. A Cantonese native speaker checked that none of the speakers had tonal

mergers and that the speakers uttered the correct tones.

From the recordings of isolated tones, we selected 3 repetitions per speaker per

tone, for a total of 90 utterances. From the recordings of connected speech, we

chose three repetitions of each Tone 33-Tx bitone for the stimulus set, for a total

of 90 tritones, 18 from each speaker, 3 distinct repetitions per speaker per Tone

33-Tx bitone. In pilot studies, the stimuli consisted of all 36 licit bitones, rather

than a subset of tritones, but subjects performed poorly and were confused by
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the many different stimulus types. Thus, the wai wai bitones were restricted to

having an initial Tone 33 tone, since Tone 33 provides a kind of neutral context as

it is the mid-range level tone in Cantonese, and the following mat3 (also mid-range

level) was included as well to form a tritone.

2.2.2 Resynthesis

All stimuli were resampled to 22kHz; tritones were extracted using a rectangu-

lar window, and RMS amplitude was rescaled to 75 dB in Praat (Boersma and

Weenink, 2010). All syllable durations were resynthesized using PSOLA imple-

mented in Praat to be have a target duration of 241±43 ms (SD), the grand mean

of the syllable durations, for a total duration of 740 ms for the tritone; the isola-

tion syllables were resynthesized to their grand mean of 512±108 ms (SD).2 Am-

plitude normalization was performed as a control to standardize amplitude across

the recordings from different speakers and tones, and duration normalization was

performed to create conditions for the listener similar to the time-normalized

parameter extraction in Peng and Wang (2005); Qian et al. (2007) and many

other automatic tonal recognizers, where f0 values are extracted uniformly over

the syllable.

Besides the isolation condition iso, four additional conditions of the manipu-

lated variable context were nested within the tritones and created by restrict-

ing the stimuli to bitones and monotones,3 listed below with the target syllable

indicated in boldface: the tritone condition tri (wai33 wai mat3), the bitone

conditions with the pre-target syllable providing preceding context, pre (wai33

2The PSOLA algorithm resynthesis added about 18 ms over the target duration over the
course of the tritone.

3In this paper, monotone always refers to a sequence of a single tone, just as bitone refers
to a sequence of two tones. It does not refer to a flat pitch.
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wai) and with the post-target syllable providing following context, post (wai

mat3), and the monotone condition mono (wai).

2.2.3 Acoustic analysis of resynthesized speech materials

We performed an acoustic analysis of the resynthesized speech materials based

on extracted f0 tracks. The f0 values were extracted using RAPT (Talkin, 1995),

a commonly used f0 detection algorithm, used in Qian et al. (2007)’s Cantonese

supratone model and other tone recognizers. Speaker-specific pitch floors and

ceilings were set following the preprocessing procedures in De Looze and Rauzy

(2009); Evanini and Lai (2010), with speaker pitch range estimated using the

35th/65th quantiles for the isolation condition, and with the 1st and 99th quan-

tiles minus or plus 30% of the range, respectively, for the tritones. The majority

of the f0 values for the tritones were in the mid range since each stimulus con-

sisted of two mid-level tones, yielding a center-heavy distribution of f0 values;

thus, we could not use the 35th quantile-based calculation from De Looze and

Rauzy (2009), since the center-heavy distribution resulted in large compression

in the range estimation. Otherwise, the default RAPT parameter settings, in-

cluding a 10ms frame shift, were used. The first and last frames were excluded

because they were often assigned f0 values creating large jumps to f0 of the ad-

jacent frame. There were a total of 46 f0 values in the iso condition (Figs. 2.5

and 2.6). There was a total of 69 f0 values for the tritone condition (Fig. 2.1);

from these f0 values, subsets of values were extracted for the other context con-

ditions, e.g. the middle 23 values for the mono condition and the first 46 for the

pre condition. Unvoiced frames were assigned f0 values using linear interpola-

tion. The f0 values were also log-transformed and then standardized as z-scores

using speaker-specific means and standard deviations. The calculated raw and
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transformed f0 range of the stimuli for each speaker is given in Table 2.1. The

parameterized stimuli were used as data for computational modeling, described

in §2.4.
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Figure 2.1: f0 contours of the tritone stimuli extracted for each of the 5 speakers

using speaker-specific pitch floors and celings in RAPT. The frame shift is 10ms.
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Speaker f0 (Hz) log f0 z-score

f4 [165.89,241.00] [5.11,5.48] [-3.35,2.35]

f3 [106.42,179.47] [4.67,5.19] [-5.78,1.83]

m6 [125.88,176.36] [4.84,5.15] [-2.91,2.94]

m1 [83.87,145.92] [4.43,4.98] [-3.48,1.97]

m5 [61.44,140.20] [4.12,4.94] [-5.08,3.60]

Table 2.1: Speaker-specific f0 range in speech materials, measured in Hz, after

log-transformation, and after standardization of log f0, with respect to speaker

means and standard deviations. The speakers are ordered from highest to lowest

maximum f0.

2.3 Tonal perception experiment

Using the speech materials described in the preceding section, §2.2, we performed

a human tonal perception experiment with Cantonese native speakers.

2.3.1 Methods

2.3.1.1 Participants

There were 18 male (age 20.9±1.9 years) and 18 female (age 21.9±1.9 years)

native Cantonese speakers who participated. They were recruited from the local

university student population at the City University of Hong Kong and at the

University of California, Los Angeles and received cash compensation. All but

one of the subjects (born/raised in Guangzhou, China) was born and/or raised

in Hong Kong, China. Of the 8 participants tested in Los Angeles, all spoke

Cantonese on a daily basis and had been in the United States for 2 to 5 years.
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2.3.1.2 Procedure

Participants were told that the stimuli were extracted from sentences lei25/35

yiu33 wai33 wai mat3 geng33 ‘You want NAME to clean the mirror.’ The stimuli

were blocked by context (mono, pre, post, tri, iso) so that participants

wouldn’t be confused about which tone they were to identify, and the block

order was pseudorandomized such that the context factor levels were roughly

uniformly distributed over the five blocks presented. Stimuli order within blocks

was randomized. Participants received a short break between blocks, and for each

block, participants were given a sheet of paper with orthographic characters which

showed what stimulus was being played, and what word they were to identify for

each context: (iso), (mono), wai33 (pre), mat33 (post), and wai33

mat33 (tri).

The task of the participants was to lexically identify the target syllable in

each stimulus by a keyboard press of one of six keys labeled with the characters

for the minimal tone set over wai. Participants were asked to respond as quickly

and accurately as possible and told they would be timed. Their responses and

reaction times, measured from the onset of the stimuli, were recorded.

2.3.1.3 Data analysis

Statistical analysis was performed in R (R Development Core Team, 2010), and

the ggplot2 package was used for creating graphics (Wickham, 2009). Tonal

identification accuracy was analyzed using mixed effects linear regression imple-

mented by the lme4 package (Bates and Maechler, 2010), a statistical method

that has become common in language research (Baayen, 2008). The interest in

this study, as in most psychological studies, was in generalizing beyond the sam-

ple of listeners and the sample of speakers from which the stimuli were drawn—in
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this case, to native Cantonese speakers.

Mixed effects models allow the inclusion of both the subject and the speaker as

crossed (independent rather than nested) random effects (Baayen et al., 2008). In

comparison, repeated measures ANOVA (RM-ANOVA) analyses allow only one

such random effect in a model, and in the case of multiple, independent random

effects as in this study, a standard practice is combinining results from separate

RM-ANOVAs for each random effect (Clark, 1973). Using mixed-effects models

allows simultaneous generalization to other participants and speakers, as both

random effects are included in a single model (Quené and van den Bergh, 2008).

Forward model selection was used to test the partial effects of context on

tonal identification accuracy, and successive nested models were compared using

likelihood ratio tests. Because the model likelihood (the probability of the data

given the estimated model parameters) can always be increased by increasing the

number of model parameters, χ2 tests were used to test for significant improve-

ment in fit to the data while penalizing for model complexity (Baayen, 2008, p.

253), as differences in deviance (−2 log(likelihood)) between nested models fit to

the same data by maximum likelihood approximately follow a χ2 distribution in

the large-sample limit.

For multiple comparisons on the mixed effects models, the multcomp package

(Hothorn et al., 2008) was used, with Tukey tests for all pairwise comparisons of

context and Bonferroni tests for selected pairwise comparisons.

2.3.2 Results

In this section, we report on the perception experiment results focusing on: (i)

comparing the two bitone conditions, pre and post in the context of the mono

and tri conditions and directly to one another (§2.3.2.1), and (ii) comparing the
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iso condition with two other conditions from connected speech—the other mono-

syllable condition, mono and the condition with the maximal local contextual

information in the experiment, the tritone condition tri (§2.3.2.2). Within each

of these subsections, we report on results aggregated across tones followed by

results for individual tones.

2.3.2.1 Bitone context conditions

Results aggregated across tones Overall tonal identification accuracy for

connected speech stimuli was significantly affected by context and was signifi-

cantly higher as more syllables were available to the listener: ordered from lowest

to highest accuracy, the context conditions were mono, post, pre, tri (Figure

2.2). Accuracy was significantly higher for the pre than the post condition. The

significant effect of context was established with model comparison—between

a linear mixed effects model for tonal identification accuracy with random inter-

cepts by-subject and by-(stimuli) speaker and one with the addition of a fixed

effect for context (mono, pre, post, tri)—which supported the inclusion

of context (χ2(3) = 184.92, p < 2.2 × 10−16). The model with context and

associated multiple comparisons are shown in Table 2.2, for which every pairwise

comparison showed a significant difference.

Results for individual tones Model comparison supported the inclusion of

context in models of tonal identification accuracy for every individual tone

except Tone 23 (χ2(3) = 204.71, 260.91, 189.07, 29.45, 6.01, 20.95, for Tone 55-

Tone 22, respectively; p < 2.2×10−16 for Tone 55-Tone 33, 1.8×10−6 for Tone 21,

0.11 for Tone 23, 1.1×10−4 for Tone 22). Multiple comparisons between context

conditions for individual tones are summarized in Table 2.3 and Fig. 2.3. The
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Figure 2.2: Comparison of tonal identification accuracy for different local acoustic

context conditions. For all contexts, Bonferroni-corrected t-tests of by-subject

tonal ID accuracy against the at-chance level (indicated by the horizontal line:

1/6, 17%) showed that performance for each condition was signficantly above

chance. Error bars show ±1SE.
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Coef β SE(β) z p

mono - pre −11.36 1.32 −8.62 <0.0001

mono - post −7.62 1.32 −5.79 <0.0001

post - pre −3.74 1.32 −2.84 <0.024

mono - tri −18.80 1.32 −14.27 <0.0001

post - tri −11.17 1.32 −8.48 <0.0001

pre - tri −7.44 1.32 −5.65 <0.0001

Table 2.2: Multiple comparisons of context contrasts for tonal identification ac-

curacy in stimuli from connected speech, calculated using Tukey tests on a linear

mixed effects model with random intercepts by-subject and by-speaker and con-

text as a fixed effect. A negative regression coefficient β indicates a higher model

estimate of tonal identification accuracy in the right member of the comparison.
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Tone 23 rise was not significantly affected by context in any comparison, and

confusion matrices conditioned on context showed similar confusion patterns

for all conditions in connected speech (Fig. 2.3, Table 2.5); Tone 23 was confused

with the other rise Tone 25, and also the mid to low level tones, Tone 33 and

Tone 22, in particular.

Among the level tones, in comparisons between contexts, Tone 55 and Tone

33 were identified with significantly higher accuracy in conditions where the pre-

target syllable was present, but Tone 22 was identified significantly more accu-

rately when the post-target syllable was present. Tone 55 and Tone 33 accuracies

were significantly higher in the pre than the post condition, while the oppo-

site was true for Tone 22 accuracy, and between the mono and post conditions,

Tone 55 accuracy was actually significantly lower for the post condition, but was

significantly higher for the pre condition than the mono condition; Tone 22 ac-

curacy was not significantly different between the mono and pre conditions, but

showed significant improvement in the post condition relative to the mono con-

dition. From the bitones to the tri condition, there was significant improvement

for Tone 55 and Tone 33 accuracy from the post condition, but no significant

difference for Tone 33 accuracy between the pre and tri conditions, and actually

a significant decrease in Tone 55 accuracy in the tri condition relative to the pre

condition.

From the inspection of confusion matrices conditioned on context (Fig. 2.3,

Table 2.5), we found that the level tone stimuli in the pre condition were system-

atically confused mostly with higher level tones, while they were systematically

confused mostly with lower level tones in the post condition. Also, the confus-

ability in the pre condition of level tones with higher level tones was lower than

the confusability in the post condition of level tones with lower level tones. For
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instance, for Tone 33, the most confusable tone in the pre condition was Tone

55 (17.04%), while the most confusable tone in the post condition was Tone 22

(36.11%).

As for the contour tones, the Tone 25 rise and Tone 21 fall were identified

with significantly higher accuracy in contexts with the post-target syllable avail-

able in context comparisons, and Tone 25 was also identified with significantly

higher accuracy with the pre-target syllable available in most context compar-

isons. Between the two bitone conditions, Tone 25 was identified significantly

more accurately in the post condition; however, there was significant improve-

ment from the mono condition to both bitone conditions, and also from both

bitone conditions to the tri condition. There was no significant difference in

Tone 21 accuracy between the two bitone conditions, but from the mono con-

dition to the bitone conditions, Tone 21 accuracy was significantly higher in the

post condition but not significantly different in the pre condition; from the

bitone conditions to the tri condition, there was no sigificant difference in Tone

21 accuracy compared to the post condition, but there was significantly higher

accuracy compared to the pre condition.

Analysis of the confusion matrices showed that the presence of the post-target

syllable reduced confusion of Tone 25 with Tone 33 and confusion of Tone 21

with Tone 22. Both the presence of the pre-target syllable and the presence of

the post-target syllable reduced confusability of Tone 25 with Tone 23 from the

monosyllabic condition (67.41%) to the bitone conditions (49.63%, 48.33% for

pre and post, respectively), and the presence of both the pre- and post-target

syllables together in the tri condition further dropped confusability with Tone

23 to 25.74%.
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2.3.2.2 The isolation context

Results aggregated across tones Model comparison supported the inclusion

of context in modeling overall tonal identification accuracy for the mono, tri

and iso conditions (χ2(2) = 226.53, p < 2.2 × 10−16). Multiple comparisons

with Bonferroni adjustments showed that accuracy was significantly higher in

isolation than for monosyllables extracted from connected speech (p < 2e−16),

but there was no significant difference between accuracy in isolation and for the

tri condition (p = 1).

Results for individual tones Tonal identification accuracy was significantly

higher for isolated monosyllables than monosyllables extracted from connected

speech for every tone except Tone 55, for which accuracy was surprisingly signif-

icantly higher for the mono condition (Table 2.4). The confusion matrices (Fig.

2.3, Table 2.5) showed that there was more confusability of Tone 55 with Tone

33 in isolation than in the mono condition. Between the iso and tri conditions,

accuracy was significantly higher for Tone 55, Tone 25, and Tone 33 for the tri-

tones, but accuracy was significantly lower for Tone 23 and Tone 22 in isolation,

and there was no significant difference in accuracy for Tone 21. The level tones

Tone 55 and Tone 33 were mostly confused with lower level tones, Tone 33 and

Tone 22, respectively, in isolation. The lowest level tone Tone 22 was confused

mostly with Tone 33 and also Tone 21 in isolation, but with the rises Tone 25

and Tone 23 as well as Tone 33 and Tone 21 for the tri condition.

Fig. 2.3 highlights that listeners were strikingly more accurate on Tone 23

in the iso condition than in any of the connected speech conditions, in which

context had no significant effect on accuracy. The higher accuracy for Tone 23

in isolation does not seem to be due to a strong response bias for Tone 23 in iso
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as the response frequency for Tone 23 in iso was 22%, higher than in tri (17%),

but similar to the response frequency in pre and post (21%), and lower than

the response frequency in mono, 25%. Nor does it seem to be due to a lexical

bias. As a rough estimate of lexical frequencies of the six orthographic characters

used in the identification task, we used the frequencies of the Mandarin cognates,

[wei], in the character frequency list of Modern Chinese from Da (2004). Counts

from that text corpus indicated the following relative frequency percentiles, from

the most to least frequent character used to represent the tones: Tone 25 (26),

Tone 21 (21), Tone 55 (20), Tone 23 (9), Tone 22 (3), Tone 33 (3); thus the

estimated lexical frequency of the character used for Tone 23 was relatively low.

67



Tone

P
er

ce
nt

 o
f c

or
re

ct
 r

es
po

ns
es

0

20

40

60

80

55 25 33 21 23 22

Context
mono

pre

post

tri

iso

Figure 2.3: Comparison of tonal identification accuracy for different local acoustic

context conditions, grouped by individual tone. For every context, performance

was well-above chance (the horizontal line shows identification accuracy for at-

chance performance (1/6, 17%)), and the error bars show ±1SE.
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Figure 2.4: Visualization of confusion matrix with context (row) and tone

(column) conditions completely crossed. Percentage of response frequency for a

given tone is given aggregated over subjects and stimulus speakers. Error bars

indicate ±1SE estimated by-subjects.
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Actual Response

Tone 55 Tone 25 Tone 33 Tone 21 Tone 23 Tone 22

Tone 55

Mono 83.70 0.93 11.85 0.19 1.30 2.04

Pre 97.96 0.19 0.56 0.19 0.74 0.37

Post 61.67 3.89 27.59 0.74 2.41 3.70

Tri 91.30 1.30 3.70 0.37 1.48 1.85

Iso 72.78 0.37 21.85 0.00 0.56 4.44

Tone 25

Mono 7.96 13.15 6.11 1.11 67.41 4.26

Pre 2.41 27.78 14.63 0.37 49.63 5.19

Post 0.19 45.37 3.15 1.48 48.33 1.48

Tri 0.37 64.81 3.89 2.78 25.74 2.41

Iso 0.00 55.56 2.96 0.56 40.74 0.19

Tone 33

Mono 50.00 2.41 32.04 0.37 2.22 12.96

Pre 17.04 3.15 66.30 1.11 2.78 9.63

Post 8.33 3.33 43.52 2.78 5.93 36.11

Tri 5.93 2.41 69.26 2.59 3.70 16.11

Iso 14.81 1.30 42.59 1.11 0.93 39.26

Tone 21

Mono 1.85 5.56 3.33 64.26 11.11 13.89

Pre 1.48 8.33 4.81 69.44 5.93 10.00

Post 0.74 6.48 3.15 76.48 7.41 5.74

Tri 1.30 5.37 3.89 77.96 5.93 5.56
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Iso 0.00 1.30 5.74 81.67 3.15 8.15

Tone 23

Mono 9.44 11.67 10.37 1.67 55.37 11.48

Pre 3.52 15.00 16.48 3.33 49.44 12.22

Post 1.85 14.44 10.93 8.33 52.96 11.48

Tri 1.48 19.26 13.15 6.85 49.07 10.19

Iso 0.19 17.59 1.11 0.37 80.74 0.00

Tone 22

Mono 13.52 5.74 32.59 2.04 12.04 34.07

Pre 3.33 7.59 29.07 2.22 17.96 39.81

Post 1.67 5.93 16.67 16.11 11.30 48.33

Tri 0.37 7.41 20.00 12.22 17.04 42.96

Iso 2.22 1.67 20.37 10.19 4.63 60.93

Table 2.5: Confusion matrix conditioned on tones by context.
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2.3.3 Discussion

We first discuss the bitone context comparison and then the isolation context com-

parisons. Results from the perception experiment indicated that the post-target

syllable could be as informative as the pre-target syllable for tonal identification

of the target syllable, and that the pre- and post-target syllables were informative

in complementary ways. Based on comparisons of tonal identification accuracy

between the mono, pre, post, and tri conditions, the pre-target syllable was

crucial for maximizing Tone 55 identification accuracy under the experimental

conditions, and the post-target syllable for Tone 21 and Tone 22 identification

accuracy. For Tone 25 and Tone 33, both the pre- and post-target syllables were

informative for the listener, but in head-to-head comparisons between the two

bitone comparisons, identification accuracy for Tone 25 was higher with the pre-

target syllable, while Tone 33 accuracy was higher with the post-target syllable.

Tone 23 was the only tone for which the two bitone conditions showed no differ-

ences for any identification accuracy comparisons, but Tone 23 showed no effect

of context at all among the connected speech conditions.

The advantage of the post- over the pre-target context for identifying the

contour tones Tone 25 and Tone 21 is likely driven by the peak delay in the f0

contours for Tone 25 and Tone 23 into the post-target syllable relative to the

pre-target and target syllables (Wong, 2006) and the presence of the post-target

rise in Tone 21 but not Tone 22 stimuli. The peak delay for Tone 25 and the post-

target rise for Tone 21 are represented in the mean log-transformed f0 contours

for Tone 25 and Tone 23 in Fig. 2.5 and in the comparison of the Tone 21 and

Tone 22 f0 contours in Fig. 2.1. Without cues available that were delayed to

the post-target syllable, even the larger rise in the tonal inventory, Tone 25, was

frequently perceived as a level tone, and the only fall (in isolation), Tone 21, was

74



frequently perceived as the lowest level tone, Tone 22.

A potential caveat for the Tone 25 results is that a grammatical factor could be

in play. In specific morphological contexts such as for vocatives for kinship terms

and intensification for adjectives, reduplicated expressions in Cantonese such as

the bitone wai33wai33 are the target of a process of tone change in which the

second tone may change into a rise identical or similar to Tone 25 (Chen, 2000;

Matthews and Yip, 1994; Yu, 2007, 2009), so that there is a possibility that

listeners would have considered a Tone 25 target stimulus in the pre condition

to be the changed form of a Tone 33 and identified the target as an underlying

form Tone 33. While we might argue that the morphological/semantic context in

the experiment was not one where tone change is active, we also confirmed that

the listener responses for Tone 25 were not consistent with active tone change.4

The advantage of the pre- over the post-target context for identifying Tone

55 and Tone 33 was systematically due to confusion in the post condition with

lower level tones, Tone 33 and Tone 22, respectively. Given that for both Tone 55

and Tone 33, the f0 contour fell from the target syllable through the post-target

syllable, especially after Tone 55 target syllables (see right panel in Fig. 2.6), the

listener response to confuse the target tone with a lower level tone in the post

condition seems unintuitive at first glance.

Some reasons for the listener confusion with lower level tones in the post

4First, if the confusability of Tone 25 with Tone 33 in the pre condition was driven by some
listeners responding with the underlying form Tone 33, then we would expect some listeners with
a majority of Tone 33 responses. However, the highest proportion of Tone 33 responses for Tone
25 in the pre condition for any listener was 40%; the mean proportion was 14.63%±10.55 (SD)
and only 4 of 36 listeners had no Tone 33 responses at all. But what if the listeners didn’t
perceive a majority of Tone 25 stimuli in the pre condition as Tone 25 surface forms? We
confirmed that the proportion of Tone 33 responses in the pre condition was not the highest for
stimuli from the speaker with the most citation-form like Tone 25 forms in the pre condition,
m1 (Fig.2.1). In fact, m1 Tone 25 stimuli in the pre condition yielded the fewest Tone 33
responses, while m5 stimuli yielded the most, suggesting that the Tone 33 confusability was
due to acoustic separability between Tone 25 and Tone 33 rather than the effect of tone change.
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condition could be that: (i) listeners are inherently poor at integrating contex-

tual information after the target to be identified in perceptual normalization;

for instance, perhaps listeners were influenced by an expectation of declination

(Vance, 1976; Flynn, 2003; Wong and Diehl, 2003; Ma et al., 2005), and overcom-

pensated for it (ii) carryover coarticulation is stronger than anticipatory coartic-

ulation (Flynn, 2003; Wong, 2006), so the post-target syllable did not provide

as much target-extrinsic information as the pre-target syllable for perceptual

normalization, (iii) listeners may have interpreted the stimulus-final fall in the

post-target syllable as a strong downtrend due to sentence-level prosody, such as

a declarative-final fall (Vance, 1976; Zee, 1998; Wong et al., 2005), not carryover

coarticulation from the target syllable, even though we specified that the stimuli

were extracted from sentence-medial position.

We restrict reasons (i) and (ii) to perceptual normalization since, given the

informativity of the post context for Tone 25, it seems that listeners can use

contextual information after the target and that the post-target syllable can be

more informative than the pre-target syllable for a given tone—but perhaps inte-

gration of context for level tones is different. While listeners’ expectations about

declination and how this affects Cantonese tonal perception has been investigated

in Wong and Diehl (2003); Ma et al. (2005, 2006), only preceding context has

been studied, and to our knowledge, it is not known how well listeners integrate

following context.

The effect of an expectation of declination or fall is supported by results

for the lowest level tone Tone 22. These did not follow the pattern of results

that level tones were more accurately identified when the pre-target syllable was

available than when the post-target syllable was available because Tone 22 was

more confusable with Tone 33 in the pre condition—more confusable than Tone
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22 was with Tone 21 in the post condition, the only lower tone than Tone 22.

Tone 22 results are consistent with the listener’s expectation of a downtrend in the

final syllable played, whether that be the target syllable, as in the pre condition,

or the post-target syllable, as in the post condition. Also, for Tone 55 there is no

higher level tone available as a competitor, and for Tone 22 there is no lower level

tone available as a competitor: we conjecture this is why the biggest differences

in accuracy between the two bitone conditions occurred for Tone 55 and Tone 22,

and in opposite directions. Overall, though both the pre and post conditions

may have been effected by expectations about downtrends, the pre condition

produced higher identification accuracies than the post condition for the level

tones, while the post condition produced higher accuracies for the contour tones

Tone 25 and Tone 21. We discuss results for Tone 23 after discussing results for

tones in isolation.
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Turning to the perception of the isolated tones, it was not surprising that

overall, tonal identification accuracy was higher between the two monosyllabic

conditions for the iso context than the mono context extracted from connected

speech. First, the isolation stimuli were about twice as long in duration, as

we used the grand means of syllable durations in isolation and in connected

speech separately in fixing the stimuli duration. Second, Figs. 2.5 and 2.6 suggest

that f0 contours of the rises Tone 25 and Tone 23 and of the level tones Tone

55, Tone 33, and Tone 22 were more separable in isolation than in connected

speech, even aggregated across the five speakers—in speaker-independent tonal

recognition: the f0 contours within the set of rises and the set of level tones were

more separated, and the f0 contours across the sets were more separated. Both

the mono and iso conditions lacked syllable-extrinsic information for perceptual

normalization, so the higher separability of the syllable-instrinsic f0 contours of

tones in isolation explains all the results for individual tones showing higher

identification accuracy in isolation.

This makes the result of higher identification accuracy in the mono condition

for Tone 55, the level tone in the relatively uncrowded high f0 range, all the

more shocking: why should Tone 55 in isolation be more confusable with Tone

33 than in extracted monosyllables from connected speech? We suspect that

carryover coarticulation at the onset of the target syllable—the rise into a level

high f0 contour (see the Tone 55 panel in Fig. 2.1)—provided “syllable-extrinsic”

information that was realized in the target syllable, in the sense that that initial

rise within the target syllable was conditioned on the previous mid-level Tone 33.

While a fall at the target onset following a Tone 33 might indicate any one of the

tones in the lower region of the pitch range, a rise to the high region of the pitch

range singles out Tone 55.
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It was also surprising that tonal identification accuracy was similar between

the isolation context—with no syllable-extrinsic information—and the tritone

context—with pre- and post-target syllables available to the listener, but this

seems reasonable upon examination of results split by pitch register. As noted

in §2.1, Wong and Diehl (2003) established that preceding context dramatically

biases the perception of Cantonese level tones, and Francis et al. (2006) found

that the presence of surrounding sentential context sharpens the identification

boundary between the level tones. In support of this, Tone 55 and especially

Tone 33 were identified with higher accuracy in the tritone condition than in

the isolation condition, in which they were confused with other level tones, as

discussed earlier. However, Tone 22, the other level tone, was identified overall

with higher accuracy in the isolation condition. This was due to confusability of

Tone 22 with not just the next highest level tone Tone 33, but also other low-

range tones, Tone 21 and Tone 23: level and contour tones were more confusable

with each other in connected speech than in isolation.

The higher level tones were identified more accurately in the tri condition,

while the lowest level tone was identified more accurately in isolation; similarly,

the rise spanning a larger and higher pitch range, Tone 25, was identified more

accurately in the tri condition, while the smaller, lower rise, Tone 23, was identi-

fied more accurately in isolation. Like for Tone 22, the higher accuracy for Tone

23 in isolation was due to the higher confusability of contour tones with level

tones in connected speech, cf. Fig. 2.5 whereas in isolation, the rises were only

confused with each other (Fig. 2.4, 2.5 ).

It is surprising that Tone 25 was identified more accurately in isolation than in

the tri condition: unlike Tone 23, Tone 25 showed only negligible confusability

with level tones in connected speech and was more confusable with Tone 23
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than in the tri condition. We conjecture that in an effectively binary decision

between the two rises, listeners performed better with connected speech from

both the availability of the pre-target syllable for perceptual normalization, as

in Huang and Holt (2009), and the availability of the post-target syllable due

to peak delay: the post-target syllable helped listeners rule out level tones as

candidates, and the pre-target syllable helped them gauge the size of the rise.

Finally, we address three tones for which identification accuracy was the most

insensitive to contextual information. Among the multiple comparisons (Table

2.3), Tone 23 had the most nonsignificant results at the 0.05 level (6 of 6 compar-

isons), while Tone 21 had 3, as well as a nonsignificant comparison between the

iso and tri conditions, and Tone 22 had 3.5 We believe it is no accident that all

three tones are in the crowded lower pitch range: Tone 23 and Tone 22 showed

the lowest overall identification accuracy in connected speech (Fig. 2.3) and were

confused with a mix of level and contour tones (Fig. 2.4). The significantly higher

accuracy for both tones in isolation vs. in the tri condition suggests that Tone

23 and Tone 22 are both simply confusable tones in connected speech, at least as

the middle member of tritones with intial and final Tone 33s, so additional local

context may be minimally informative for tonal identification.

Tone 21 stands out among the three tones because its overall accuracy rivaled

that of Tone 55, the most accurately identified tone. The availability of voice

quality cues beyond purely f0 value-based cues may have been a factor in the

relatively context-independent perception of Tone 21, since Chapter 3 shows that

the presence of creak can increase tonal identification accuracy and bias percep-

tion of Tone 21 for Cantonese listeners. Of all the tones we recorded, Tone 21

5Because the Tone 23 contours from speaker m5 were similar to his Tone 33 contours, we
also checked the effect of context when his stimuli were withheld. There was still only one
significant multiple comparison, between mono and tri.
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was most often produced with non-modal phonation, typically vocal fry (Gerratt

and Kreiman, 2001). Tone 21 has previously been anecdotally noted to co-occur

with creak (Vance, 1977; Matthews and Yip, 1994; Flynn, 2003). As a measure of

the prevalence of creak in Tone 21 realizations, we counted the number of stimuli

with at least 3 voiceless frames in RAPT f0 extraction. In isolation, 8 of the 14

such files were Tone 21 productions, about half of the Tone 21 stimuli, (3 were

Tone 23 productions), and in the tritone stimuli, 4 of the 4 such files were Tone

21 productions.

2.4 Computational modeling

The perception experiment (§2.3) showed that the post-target syllable improves

native listener tonal identification accuracy for Tone 25, while the pre-target

syllable is minimally informative for Tone 25 identification, but is informative

for the identification of level tones; it also showed that tones uttered in isolation

can be identified as accurately as tones presented with preceding and following

syllables from connected speech. While we suggested that these results could

be explained with reference to the separability of the f0 contours of the tones

conditioned on the different context conditions, there are in fact an infinite

number of acoustic parameters potentially available to the listener. Moreover,

there is an unbounded range of influences outside the speech signal that the

listener could bring to bear on the classification task, such as tonal change in

reduplication, processing asymmetries for preceding vs. following context or for

hearing two syllables in a row consisting of the same segment sequence (wai wai

in the pre condition vs. wai mat in the post condition).

To support our claim that separability in an acoustic space defined by sim-

ple f0-based parameters could largely explain the listeners’ behavior, we used
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computational methods to model the classification problem presented to the lis-

teners, defined under precise assumptions. Our purpose was to determine: given

a minimal acoustic parameterization of the speech signal with only f0-based pa-

rameters and abstracting away from other sources of evidence, could the stimuli

in our experiment be classified with results consistent with listener behavior: (i)

with higher accuracy for Tone 25 identification with contextual parameters from

the post-target syllable than from the pre-target syllable and similar confusion

patterns, and (ii) with comparable overall accuracy for tones uttered in isolation

and in full tritones from connected speech? In the modeling, we defined the raw

acoustic parametrization of the stimuli to be f0 values extracted from the stimuli

with a 10ms frameshift, and because how finely listeners track the unfolding of

the speech signal for tonal perception is not known, we also derived f0 parameter

sets varying in temporal resolution that were sets of mean f0 values over 30-ms

windows for 2, 3, 5, and 7 windows uniformly distributed over the syllable. For

the 10ms frameshift, there were 23 f0 values sampled per syllable, 69 in total

for modeling the tritone condition, 46 for each bitone condition, and 23 for the

mono condition. We tested and trained within the same condition, since the

classifiers, being trained on a particular condition, are necessarily defined over

the parameterization of the condition. We chose linear support vector machines

(SVMs) as our classifiers (Vapnik, 1995; Cortes and Vapnik, 1995; Burges, 1998).

SVMs are well-characterized mathematically, widely used in machine learning

and have been used in automatic tonal recognizers, e.g. Levow (2005); Peng and

Wang (2005).

Following Bennett and Bredensteiner (2000), we sketch a geometrical charac-

terization of how SVMs work for a binary classification problem, e.g. for two tone

classes, H or L. Each stimulus is parameterized as a real-valued p-dimensional

vector and labeled as an H or L. Thus, the H and L stimulus sets each comprise
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a set of points in Rp. The SVM algorithm determines an optimal decision rule to

assign a class label to a stimulus. A linear SVM determines a p− 1 dimensional

separating hyperplane as a decision boundary in the parameter space, i.e. a 1-D

separating line for stimuli parameterized in 2-D space, R2, whose direction is de-

termined as a linear combination of the parameters: a parameter whose weight,

called the primal weight, has a greater magnitude in the linear combination has

a greater influence in deciding the classification of a stimulus.

The SVM algorithm defines the optimal separating hyperplane as the one

maximizing the distance from the hyperplane to the H and L sets. This bisects

and is orthogonal to the line segment between two closest points of the convex

hulls of the H and L sets (Boyd and Vandenberghe, 2004, p. 46-49), where the

convex hull of a set is defined as the set of points enclosed in the tightest rubber

band one can stretch around the set. If the H and L sets are linearly inseparable,

i.e. if their convex hulls overlap, then a soft margin SVM algorithm can be used.

This allows for some points to be on the wrong side of the margin in determining

the optimal separating hyperplane, and the tradeoff between maximizing the

margin and minimizing classification error is balanced by tuning a soft margin

parameter.

Since we desire the classification rule chosen by the SVM algorithm to gener-

alize beyond the training data provided to the algorithm, evaluation of classifier

performance proceeds by determining classification accuracy on test data, data

not in the training data set.

2.4.1 Methods

The linear SVMs were implemented with LIBSVM (Chang and Lin, 2001). The

SVM algorithm involves calculating Euclidean distances in the parameter space.
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This means that it is necessary to scale the data, such that parameters with a

greater range do not dominate the direction of the optimal separating hyperplane

relative to parameters with a smaller range; it also necessary for the training and

test data to be scaled in the same way. Thus, the parameter sets used were

z-score standardized log-transformed f0 values rather than f0 in Hz (§2.2.3), cf.

(Levow, 2006, §2.3).

LIBSVM treated the multiclass 6-way Cantonese tone classification problem in

a standard way by decomposing it as
(
6
2

)
= 15 binary classification sub-problems

and using a voting strategy to combine the 15 decisions. For each temporal

resolution of f0 parameterization, (2, 3, 5, or 7 windows per syllable, or with 10

ms frames), for each context condition for a given temporal resolution, 5-fold

cross-validation was performed, and the data was partitioned into 5 folds, one

fold per stimulus speaker. Rotating across the folds, a single fold (18 stimuli, 1

speaker) was withheld as test data, and the remaining four folds (4 × 18 = 72

stimuli, 4 speakers) were used for training data. The soft margin parameter was

chosen for each rotation using 5-fold cross-validation on the training data. All

classification results discussed below are averaged across the results from the 5

rotations; standard error for classification accuracy is calculated from the variance

of the accuracy over the 5 folds.

2.4.2 Results

Overall SVM classification accuracy aggregated over tones and speaker folds was

not significantly different between the modeled post and pre bitone conditions

for any sampling resolution, except for 2 windows/syllable, when accuracy in the

post condition was significantly higher (t(4) = −6.32 (paired by fold), p = 3.20×

10−3). However, across context conditions within each temporal resolution, there
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2/syll 3/syll 5/syll 7/syll 10ms

mono 33.00 (18.26) 53.33 (17.00) 66.67 (14.91) 66.67 (14.91) 66.67 (14.91)

pre 40.00 (6.67) 46.67 (17.00) 66.67 (14.91) 73.33 (12.47) 66.67 (14.91)

post 86.67 (13.33) 80.00 (13.33) 86.67 (13.33) 86.67 (8.16) 86.67 (8.16)

tri 93.33 (6.67) 93.33 (6.67) 86.67 (8.16) 86.67 (8.16) 86.67 (8.16)

Table 2.6: SVM classification accuracy for Tone 25 in the connected speech con-

ditions for each temporal resolution, from 2 to 7 windows/syllable, and also for

a 10 ms frame shift. Accuracies and SE (in parentheses) were calculated over

speaker folds.

were in fact almost no significant differences in classification accuracy at all—

other than the one just mentioned, there were only significant differences between

the tritone condition and the mono and pre conditions for 3 windows/syllable.

Like in the analysis of the perceptual experiment, we analyzed results by

individual tones to unpack what insight we could gain from the computational

modeling. Classification accuracy for the level tones were near-perfect indepen-

dent of context or temporal resolution, especially for Tone 55 and Tone 33. For

Tone 25, for every temporal resolution, classification accuracy in post was higher

than in pre (Table 2.6). Misclassifications of Tone 25 were generally due to mis-

labelings as Tone 33 and Tone 22 in the pre condition but Tone 23 in the post

condition. In addition, classification accuracy for Tone 25 in the pre condition

was close to that of the mono condition, while accuracy in the post condition

was relatively higher, closer to that of the tri condition for every sampling res-

olution. These trends are most apparent with the 2 windows/syllable sampling

resolution, the only resolution setting in which t-tests, paired by fold, showed

(near) significant differences where they were expected based on human results,
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between the bitone conditions, and between mono and post and pre and tri:

t(4) = -0.34, p = 0.75 for mono-pre, t(4) = -1.73, p = 0.16 for mono-post,

t(4) = -3.5, p = 0.025 for pre-post, t(4) = -6.5, p = 0.0028 for pre-tri, t(4) =

-1, p = 0.37 for post-tri (p-values uncorrected for the 4 comparisons)).

Furthermore, the mean primal weights aggregated over folds for our models

of the tritone condition showed the general trend that the weights defining sep-

arating hyperplanes for binary classification problems involving Tone 25 were of

relatively higher magnitude for the post-target f0 values than the pre-target f0

values and target f0 values (Fig. 2.7). That is, for 2-way classifications for Tone

25 vs. each tone in the set of the other five tones, except Tone 55, the classifi-

cation decision was more strongly influenced by post-target acoustic information

than pre-target and target syllable acoustic information.

SVM classification accuracy for the isolated stimuli was strikingly low for

Tone 21, with accuracy ranging from 6.67-46.67% over the different temporal

resolutions, quite unlike the high Tone 21 accuracy in human perception. Despite

this, there was no significant difference between overall classification accuracy for

the isolated stimuli in comparison with the tritones from connected speech, in t-

tests paired by fold for each temporal resolution; for 7 windows/syllable, results

were closest to being significant, with accuracy higher for the tritones, t(4) =

2.49, p = 0.061. Tone 23 classification accuracy was not strikingly higher for

the isolated stimuli than for other context conditions as in human perception;

rather, it generally hovered between 40-60% regardless of condition, and in the

isolation condition, Tone 23 was frequently misclassified as Tone 21 and less often

as Tone 22, while in the other conditions, Tone 23 was misclassified as Tone 22

more often than as Tone 21.
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Figure 2.7: Mean weights aggregated over folds for defining separating hyper-

planes for each binary classification problem decomposed from the 6-way Can-

tonese tone classification problem, for the tritone condition and a temporal res-

olution of 5 windows/syllable for parameter extraction. The weights (±1SE) are

indicated for the f0 parameters from the pre-target syllable (grey triangles), the

target syllable (black circles), and the post-target syllable (grey squares), sorted

by temporal order.

2.4.3 Discussion

Given only f0-based parameters and abstracting away from other sources of ev-

idence, the stimuli in our experiment showed a trend for higher classification

89



accuracy with support vector machines for the Tone 25 rise with contextual pa-

rameters from the post-target syllable than from the pre-target syllable. Confu-

sion patterns were similar to those in the human perception experiment, where

Tone 25 was more confusable with level tones when the pre-target contextual

information was available. Furthermore, the relative magnitudes of weights of

the parameters defining separating hyperplanes for binary classification decisions

involving Tone 25 in our models of the tritone condition were generally higher for

the post-target parameters than the target and pre-target parameters. Classifi-

cation accuracy for stimuli uttered in isolation was comparable with accuracy for

tritone stimuli from connected speech. All these results were robust across the

different temporal resolutions for parameter extraction, from 2 windows/syllable

to 7 windows/syllable, and with 10 ms frame shifts. Thus, overall, the computa-

tional modeling using f0-based parameters supported some of the main claims of

our acoustic account of listener behavior.

However, the computational modeling was also limited in substantial ways.

First, the tiny data set—designed to be suitable for a human experiment— made

the machine results less sensitive: we were only able to test the trained classifiers

on 3 examples per tone, and thus, few results comparing contexts reached statis-

tical significance. This is why we did not test for a negative effect of context

on Tone 23 classification accuracy.

Second, the scaling of the data in pre-processing, while standard in computer

science and statistics, implies an assumption of a cognitive model where the lis-

teners scaled the data in such a way that it was perceived as normalized with

respect to each speaker. This is a methodological abstraction, but nevertheless an

assumption that seemed to greatly change the setup for the classification problem

relative to what the listeners were doing. None of the human perception results
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for level tones were reflected in the machine results: level tones were classified

with near-perfect accuracy regardless of any conditioning, while contextual in-

formation, especially pre-target context, greatly improved level tone accuracy for

humans. The most plausible explanation for this is that the z-score normaliza-

tion for the machine classification muted the informativity that syllable-extrinsic

context provided for perceptual normalization. In support of this explanation,

the weights for the separating hyperplanes in Fig. 2.7 show a very limited in-

fluence of the pre-target contextual information overall, and for level tones, the

highest weight magnitudes are assigned to the target syllable parameters. The

computational modeling for the rises seemed to be much more human-like, and

this was probably because contour tone perception for human and machine relied

less on normalization.

Third, the parameterization of the stimuli poorly captured the voice quality

information available to the listeners, cf. §2.3.3. While human identification of

the Tone 21 fall was around 70-80% accurate overall, with little effect of context,

machine identification was typically 30% or below for isolated stimuli, but around

60-70% for the other contexts. We conjecture that the misfit between human and

machine is due to the lack of voice quality information beyond smoothed f0-

based values in the computational modeling : in particular, because it is difficult

to deal with missing values in machine learning, we filled the frames where RAPT

assigned no f0 values (typically in creaky regions) using linear interpolation. For

the isolated stimuli, in particular, where nearly half the Tone 21 stimuli had

creaky regions and missing frames, our crude smoothing clearly did not capture

how listeners perceive creak, and also resulted in confusion patterns quite different

from human confusion patterns, such as Tone 23 being highly confusable with

Tone 21 in isolation for machines, while Tone 23 was highly confusable with Tone

25 in isolation for humans. While one could argue that with more sophisticated
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heuristics, we could have presented corrected f0 tracks to the algorithm that may

have increased Tone 21 accuracy, the fact remains that modeling human tonal

perception using purely (smoothed) f0-based parameters does not capture what

humans are doing.

2.5 General discussion

In this study, we found evidence from a Cantonese tonal perception experiment

that listeners use following context in tonal identification: in speaker-independent

tonal perception of tones extracted from connected speech, listeners were more

accurate in identifying the Tone 25 rise and Tone 21 fall when they were also

provided the syllable following the rise, than when they were also provided the

syllable preceding the rise. The preceding and following syllables improved lis-

tener accuracy on complementary sets of tones; in general, while the post-target

syllable improved contour tone accuracy, the pre-target syllable improved level

tone accuracy. Computational modeling of the stimuli using support vector ma-

chine classification of standardized log-transformed f0 parameters supported the

idea that following context benefited Tone 25 perception because of peak delay.

With the purely acoustic information available, machine classification showed a

trend for higher accuracy with the post-target parameters available than with the

pre-target syllable parameters available, and classification decision rules involving

Tone 25 generally weighted post-target parameters more highly than pre-target

or target syllables parameters.

Furthermore, tones were more perceptually distinct for the listeners in isola-

tion than in connected speech, but only when there was no local acoustic context

available, and even in this case—the mono condition—Tone 55 identification ac-

curacy was higher for connected speech probably due to carryover coarticulation.
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When the tones were presented with the pre- and post-target syllables as tritones,

overall tonal identification accuracy was comparable with that in isolation. As

we expected, the perception of level tones suffered in isolation relative to when

context was available in connected speech. Surprisingly, the low level tones and

rises, Tone 23 and Tone 22, were perceived with higher accuracy in isolation than

in the tritone condition. This was most likely because of the distinctiveness of

rises and levels in isolation: rises were confused with rises, and levels with levels,

while this was not the case in connected speech, especially in the crowded lower

pitch range, either for the listeners or in computational modeling.

Therefore, tones in isolation in our experiment were more perceptually dis-

tinct than in connected speech, even in speaker-independent perception, in a way

very relevant for understanding phonological representation: confusion patterns

in isolation patterned along distinctions drawn by standard phonological features,

e.g. Wang (1967), which divide levels and rises and falls. However, tones in iso-

lation were not identified by listeners more accurately than tones in connected

speech—provided that listeners were provided with local acoustic context, the

neighboring syllables. This result, coupled with our finding that both preced-

ing and following context improve tonal recognition for listeners and the results

from the literature that show improvement in automatic tonal recognition with

preceding and following context as well, suggests that tonal representations can

span a domain beyond the associated syllables. Alternations between citation

tones and tones in connected speech may involve mapping to tones in connected

speech including contextual features from neighboring syllables. Furthermore, we

suggest that isolation can be treated as one of many contexts rather than only as

a privileged base. With these suggestions, we mean to address the cognitive rep-

resentation of tones, and not dismiss the utility of parameterizations for tone that

may very well achieve high rates of recognition in automatic tonal recognition.
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Based on our perception study and the automatic tonal recognition studies us-

ing contextual parameters referenced in §2.1, it seems that only a limited amount

of contextual information may need to be included in tonal representation, e.g.

just a few samples of f0-based parameters from each neighboring syllable. Adding

contextual information, when it is as limited as we are proposing, does not ex-

plode the complexity/dimensionality of the representation. Moreover, contextual

information seems to be necessary to account for listeners being undaunted in

the face of extreme allophonic variation (from the perspective of citation under-

lying forms) so long as the neighboring syllables conditioning the variation are

provided (see examples in Shih and Kochanski (2000)). Xu (1994) found that in

such cases, such as when Mandarin Tone 4, a fall in citation form, appears as

a rise when flanked by a preceding tone ending low and a following tone start-

ing high, tonal identification accuracy dropped below chance when the preceding

and following syllables were replaced with white noise, while it was 97% with the

original flanking syllables.

From a typological and learnability perspective, both the ideas of tonal rep-

resentations spanning a temporal domain beyond a single syllable and isolation

as one among many contexts are natural ones. First, tones seem to be differ-

ent from other phonological categories like vowels or consonants because it is

the norm for them, much more than vowels or consonants, to spread and shift

beyond the syllables they are associated to (Goldsmith, 1976). Peak delay, for

instance, is a typical process, as is tonal shift. Tonal representations spanning

beyond the associated syllable of a tone can help explain diachronic processes in

which phonetic peak delay could result in tonal shift (Kaplan, 2008).

Second, cross-linguistic field work has shown that in some languages, neutral-

izations of tonal contrasts occur when tones are next to other tones in connected
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speech in sandhi contexts; in others, neutralizations occur in isolation: “whether

one must take the citation tone or the sandhi tone to be underlying depends

on the observed patterns of tonal alternations” (Chen, 2000, 51). This is not

an observation special to tones; it is a general and classic one in phonology, as

discussed in Kenstowicz and Kisseberth (1977, 18) and Hayes (2008, 165). The

language specificity of which context might provide an underlying form implies

that this is something that must be learned. From a learnability standpoint, too,

the task of learning to map tones in connected speech devoid of context with

isolated forms gives rise to a challenging learning puzzle that is manageable if we

consider mapping to forms including (a small amount of) context.

Further explorations of tonal representations spanning multiple syllables us-

ing computational modeling would benefit from a better understanding of how

to model the scaling of parameters in a human-like way, as the z-score stan-

dardization used here was the likely culprit for poor fit with listener behavior in

integrating information from neighboring syllables for level tone identification.

In addition, it would be interesting to find a cognitively-motivated way to model

training based on parameters from one particular context, but testing on parame-

ters from another. This would help us understand mapping between alternations.

However, it is non-trivial to propose cognitively-motivated rules for how to adapt

a classifier defined in one parameter space to classify objects in another parameter

space.

Further explorations using perceptual experimentation could consider alter-

natives to the stimuli design here, where contexts from connected speech were

modeled using extracted sentence-medial tritones. Systematic errors consistent

with expectations of stimuli-final downtrends suggests that it may be difficult for

listeners to treat such extracted stimuli as fragments of connected speech.
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While surely more cross-linguistic work in typologically different tonal sys-

tems would be very informative, Cantonese presents an interesting problem for

alternation between allophonic variants of tones. Mok and Wong (2010a,b) have

studied tonal mergers in Cantonese, between Tone 25/Tone 23, Tone 33/Tone

22, and Tone 21/Tone 22 in present-day Cantonese. In post-hoc analysis of our

listeners, we checked for these perceptual mergers in our listeners in the isolation

condition by checking if a majority of responses to a member of those merger

pairs was the other member of the pair. Among the merger pairs Tone 33/Tone

22 and Tone 21/Tone 22, only one subject confused Tone 22 with Tone 21 more

than 53% of the time; otherwise, no subject showed confusability among the

merger pairs above 50%. However, there were 9 subjects who confused Tone 25

with Tone 23 at least 50% of the time, one 87% of the time, and the rest 73%

of the time or less. Did these subjects have Tone 25/Tone 23 mergers? Not

if mergers are unconditioned on alternation between allophonic variants: in the

tri condition, 4 subjects had above 50% confusability (53-60%) of Tone 25 with

Tone 23, but none of the subjects were the same as the 9 subjects who performed

poorly in isolation. For our experiment, we abstracted away from tonal merger in

present-day Cantonese, but a question that one could explore with subjects with

tonal mergers is how the tonal mergers interact with alternation and allophonic

variation.
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CHAPTER 3

The role of creaky voice in Cantonese tonal

perception1

Glottalization: With loud stress, /3/ and /5/ often have glottal friction during the

lowest-pitched phase of the contour.

Charles Hockett on Peiping phonology, (Hockett, 1947, 256)

Other elements, such as a slightly shorter duration of the 2nd Tone and slight vocal

constriction at the trough of the 3rd Tone, may be considered as secondary, though

they may become important under special conditons, such as in whispered speech.

Yuen Ren Chao on Mandarin tones, (Chao, 1956, 53)

3.1 Introduction

There are two named typological patterns for languages in which variation in the

voice source over the vowel/rime results in contrasts in lexical meaning. Tone

languages are traditionally defined to be languages where pitch is lexically con-

trastive (Yip, 2002). Register languages, at least in opposition to tone languages,

are traditionally defined to be languages where phonation is lexically contrastive

1This chapter represents joint work with Hiu Wai Lam. Experiment 1 was
previously described in her bachelor’s honors thesis.
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(Henderson, 1952): “phonation type is to a register language what tones are to

a tone language” (DiCanio, 2009, p. 162).2

In addition, some languages have both contrastive pitch and contrastive phona-

tion. In Jalapa Mazatec, breathy, modal, and creaky phonation can occur on high,

mid, and low tones for a three way-by-three way set of suprasegmental contrasts

(Kirk et al., 1993; Silverman et al., 1995; Garellek and Keating, 2011). Other such

languages include Tibeto-Burman languages such as Mpi (Ladefoged and Mad-

dieson, 1996; Blankenship, 2002), Jingpho (Maddieson and Ladefoged, 1985), and

Yi family languages (Kuang, 2011), some of which may have phonation contrasts

for only a subset of the tones.

Hmong and Vietnamese are traditionally called tone languages, but they also

are of this type. In Hmong, one of the falling tones is consistently breathy (Huff-

man, 1985; Andruski and Ratliff, 2000), and in dialects of Vietnamese, multiple

tones are consistently realized with different kinds of nonmodal phonation (Pham,

2003; Michaud, 2004). For these languages, acoustic studies suggest that phona-

tion is contrastive (Andruski and Ratliff, 2000; Pham, 2003), i.e. fundamental

frequency (f0) values alone are insufficient for defining a contrast, and perceptual

studies confirm that listeners use voice quality cues in tonal perception (Andruski,

2006; Brunelle, 2009; Kirby, 2010).

There are also languages in which, between pitch and phonation, only one

is contrastive, but the other, though non-contrastive, is conditioned on the con-

trastive dimension. The definition of register languages, in fact, traditionally

2The literature on voice quality is fraught with inconsistencies in terminology (Gerratt and
Kreiman, 2001; Surana and Slifka, 2006). We use phonation as a term for a specific class of
voice quality which can be divided into two classes: modal (default, baseline) and nonmodal
phonation. The class of nonmodal phonations discussed in this paper is sometimes called creaky
in referring to the acoustic signal, and we use creaky/creak to describe both period doubling
and vocal fry. We reserve the term creaky voice to refer to the percept associated with creak
in the acoustic signal.
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encompasses more than just contrastive phonation: while pitch is not considered

to be the “primary relevant feature”, tendencies for pitch characteristics are stan-

dardly used in defining a register in a register language (Henderson, 1952, p. 151).

Descriptions and phonetic studies of register languages do not abstract away from

studying how f0 and pitch fit in the definition of registers (e.g. Abramson et al.

(2004) on Suai and DiCanio (2009) on Chong); in fact, though register languages

are traditionally defined to have contrastive phonation, results from perception

experiments in register languages indicate that it is not clear that either pitch or

phonation alone is contrastive (Abramson et al., 2004; Gruber, 2011).

In contrast to in register languages, in tone languages, it is the norm to

abstract away from noncontrastive phonation cues that may be conditioned on

tonal categories. Yet, in some tone languages, it is well known that one or more

tone categories may inconsistently be realized with nonmodal phonation. The

standard example for this pattern is Mandarin: Tone 3 (214, ŁŘ£), the lowest tone

in the inventory, is sometimes creaky (Hockett, 1947; Chao, 1956; G̊arding et al.,

1986; Klatt and Klatt, 1990; Davison, 1991; Belotel-Grenié and Grenié, 1997).

Because the presence of creak in Tone 3 productions within and across speakers

is variable, and implicitly since perception experiments as well as automatic tonal

recognition studies typically abstract away from creak for methodological reasons

(e.g. Whalen and Xu (1992, p. 27-29); Zhang and Hirose (2004); Wang et al.

(2010)) f0-based features are assumed to be sufficient for discrimination of Tone

3 from the other tones of Mandarin.

Another language of this type is Cantonese, which has six tones: high level

(Tone 1, 55,
Ă
£), high rising (Tone 2, 35/25, Ę£/Ğ£), mid level (Tone 3, 33, Ă£), low

falling (Tone 4, 21/11, Ą£/Ă£), low rising (Tone 5, 23/13, Ě£/Ę£), and low level (Tone
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6, 22, Ă£) (Matthews and Yip, 1994).3 Cantonese has anecdotally been reported

to have an (inconsistently) creaky Tone 4 (Vance, 1977, 105; Matthews and Yip,

1994, 22), and Yu (2010) confirmed this in a small corpus of Cantonese data.

Santa Ana Del Valle Zapotec (Oto-Manguean, Mexico) has also has been found

to have creak inconsistently realized on a falling tone (Esposito, 2003, p. 39),

dependent on prosodic position.

This paper addresses the role of phonation cues in tonal perception in Can-

tonese, an exemplar of a tone language with non-contrastive phonation cues. An

initial question to ask of such languages is: how prevalent is the presence of creak

and is it conditioned by tonal category? Small corpus studies of Mandarin and

Cantonese connected speech suggest that creak is prevalent in the lowest tone of

the inventory and that its presence is conditioned on tonal category because creak

is less frequent in other tones, cf. Table 3.1; creak is not uniformly distributed

among the tones.

Since the presence of creaky voice in Mandarin and Cantonese is both fre-

quent and conditioned on tonal category, a natural research question is: are

listeners sensitive to creaky voice in tonal perception in tonal languages with non-

contrastive phonation cues? While a number of perceptual studies have shown

that listeners of tonal languages with contrastive phonation use phonation-based

cues in tonal perception, there are few such studies on languages with non-

contrastive phonation cues. G̊arding et al. (1986) used a 2-way forced choice

tonal identification task for Tone 3 and 4 in Mandarin and tested listeners on a

continuum of timepoints for a minimum (turning point) in the f0 contour. They

compared the identification curve for stimuli without creak, and those resynthe-

sized to be creaky by introducing pitch halving in the middle of the vowel. They

3Some descriptions also distinguish these tones from the shorter entering tones (high, mid,
and low level) which occur in syllables with unreleased stop codas.
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found that the pitch halving had very little or no effect on tonal identification.

However, Belotel-Grenié and Grenié (1997) performed a tonal identification gat-

ing task in Mandarin with both creaky and non-creaky Tone 3 natural stimuli and

found that the recognition point for the listeners came sooner for creaky Tone

3s. Donohue (2011); Yang (2011) also reported evidence for the sensitivity of

listeners to creaky voice in Fuzhou and Mandarin tonal perception, respectively.

No previous work has demonstrated that the presence of creak can improve tonal

identification accuracy in a language with non-contrastive phonation.

In this paper, we performed two experiments in Cantonese tonal perception

to build on these previous studies. The first experiment was an initial test for

sensitivity of listeners to creaky voice in Cantonese tonal perception. It was a

6-alternative forced choice tonal identification task of Cantonese monosyllables

extracted from a corpus of multispeaker connected speech. Drawing on the nat-

ural variation in the corpus, we chose half of the Tone 4 stimuli to be creaky and

the other half non-creaky. Beyond hypothesizing a sensitivity to creaky voice

in Cantonese tonal perception, we hypothesized that identification accuracy for

the creaky Tone 4s would be higher than that of the non-creaky Tone 4s, and

reaction time for the listener response would be shorter for the creaky Tone 4s

than non-creaky Tone 4s.

Experiment 1, like previous experiments on the role of creaky voice in tonal

perception such as G̊arding et al. (1986); Belotel-Grenié and Grenié (1997),

treated creaky voice as a single cue with no internal structure. This is because

our current understanding of how creak is generated by the voice source and how

listeners perceive variability in the realization of creaky speech is still very lim-

ited. Thus, the second experiment elaborated on our knowledge of how listeners

use creak in tonal perception. It was designed to follow up on Experiment 1 and
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bear on the following questions: (i) How do listeners integrate creaky voice with

pitch cues? and (ii) Are listeners sensitive to details of creak? The experiment

was a controlled 2-alternative forced choice tonal identification task between the

low fall Tone 4 and the low level Tone 6, the tone most confusable with Tone

4 (Ma et al., 2005; Khouw and Ciocca, 2007; Fok, 1974). Level f0 Tone 6 pro-

ductions from a male and female speaker were resynthesized and cross-spliced

with different natural creaky productions of Tone 4 and presented to the listen-

ers. Additionally, the tone to be identified was preceded by a syllable whose

f0 was shifted up and down to see if listeners integrate creak with contexual f0

information.

The results of both experiments bear on a range of issues for tonal languages

with non-contrastive phonation cues: (1) how tones are represented in the acous-

tic space relevant for human tonal perception, i.e. if there is reason to define tones

in an elaborated space with voice quality parameters beyond f0 values, and (2)

if automatic tonal recognition might benefit from changing current approaches

which abstract away from creak in the speech signal.

In the rest of this paper, we report on Experiment 1 in Sec. 3.2 and Experiment

2 in Sec. 3.3 and conclude with a general discussion (Sec. 3.4).

3.2 Experiment 1: Cantonese tonal identification and creaky

voice in Tone 4

Previous results regarding whether listeners are sensitive to creaky voice in tonal

perception in tonal languages with non-contrastive phonation cues are limited

in number and inconsistent, cf. Sec. 3.1, and primarily only Mandarin has been

studied. Experiment 1 tested whether Cantonese listeners showed sensitivity to

103



creaky voice in tonal perception.

We designed the tonal identification task to be very difficult to maximize the

chance that listeners could benefit from creaky voice in tonal perception, since the

previous studies in Mandarin have had inconsistent results, and since the listeners

in Belotel-Grenié and Grenié (1997) were at ceiling for tonal identification accu-

racy so that it was not possible to detect the effect of creaky voice on accuracy.

The realization of tones in the stimuli was highly variable since the stimuli were

extracted from a multispeaker corpus of connected speech designed to exemplify

contextual tonal variation. The contextual information actually available to the

listener was minimal because the stimuli were monosyllables, the presentation of

stimuli was randomized, and the identification task required choosing between all

six tones of Cantonese.

3.2.1 Methods

3.2.1.1 Materials

The stimuli were 596 tokens of sentence-medial /lau/ syllables drawn from a

Cantonese tonal production corpus consisting of sentences [lei25/35 jiu33 lau lau

jak^33 tSoeN33/kap^33/sou33] ‘you want Lau-Lau to eat the sauce/pigeon/vegetable’

with the target bitone /lau-lau/ over all 36 possible combinations of tones T1

to T6.4 For all tones, lau is a real word, although lau33 is uncommon. There

were 108 sentences in total, 5 repetitions of each sentence, and 15 speakers in this

corpus. From this corpus, 72 examples were drawn in total for each tone from

4 male and 4 females who were chosen to be widely distributed in pitch range.

4Reduplicated expressions, e.g. when the bitone is composed of a sequence of identical mor-
phemes, can be the target of tonal change in certain morphological/semantic contexts, such
as for marking vocatives or intensification in adjectives (Matthews and Yip, 1994; Yu, 2007,
2009), but there were no tonal changes in the recordings.

104



The bitone sequence and position of the syllable in the bitone (1st or 2nd) were

balanced for each speaker. For the T4 tokens, half of the tokens were chosen

to be creaky and the other half non-creaky. By non-creaky, we do not mean

modal. Non-creaky tokens may have had a region of relatively low amplitude

or breathiness. Because of great interspeaker variability in the prevalence of

creaky T4s, it was not possible to fully balance the presence of creak in T4s. All

female speakers contributed 6 creaky and 6 non-creaky T4s, but one male speaker

contributed only 2 creaky tokens and another 9.

T4 tokens were determined to be creaky by listening and manual inspection

of the waveform and spectrogram in Praat (Boersma and Weenink, 2010). A

token was defined to be creaky if it had the auditory percept of creaky voice, as

determined by the authors and if: 1) there were alternating cycles of amplitude

and/or frequency or irregular glottal pulses in the waveform, 2) missing values or

discontinuities in the f0 track determined by Praat’s autocorrelation algorithm

with default settings, and/or 3) the appearance of strong subharmonics or lack

of harmonic structure in the narrowband spectrogram. Generally these three

indicators occurred simultaneously. An expert in voice quality listened to the

creaky/non-creaky subsets and confirmed that the tokens had/didn’t have the

percept of creaky voice. All tokens were resynthesized using PSOLA in Praat

to have equal average amplitude, and the duration of each token was equalized

to 313ms, the grand mean of token durations. Duration and amplitude were

controlled since this study was designed to single out the contribution of creaky

voice as a cue.
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3.2.1.2 Participants

The participants were 16 native Cantonese speakers recruited from the student

population at the University of California, Los Angeles; all spoke Cantonese on

a daily basis. They received cash compensation. All were born in Hong Kong

except one born in Macau, and their mean time of stay in the US was 4.0±1.8

years. There were 11 males (age 20.6±1.6 years) and 5 females (age 21.2±0.8

years). Two other participants were tested but omitted from analysis due to

equipment failure.

3.2.1.3 Procedure

Participants were tested in a sound-treated booth. The perception experiment

was run in Matlab using Psychophysics Toolbox extensions (Pelli, 1997; Brainard,

1997). Stimuli were played from an Echo Indigo IO sound card on a laptop

over studio monitor headphones at a standardized, comfortable volume, and the

responses and reaction times of the subjects measured from the onset of the

stimulus were recorded. The interstimulus interval was 3s.

The task of the participants was to identify each stimulus by a keyboard press

of one of six keys labeled with the characters for the minimal tonal set over lau.

The lexical meanings of the orthographic characters for Tones 1-6, respectively,

were: ‘angry’, ‘twist’, ‘instigate’, ‘stay’, ‘willow’, and ‘leak’. Participants were

asked to respond as quickly and accurately as possible and told they would be

timed. They were also told that the stimuli were extracted from sentences lei25/35

jiu33 lau lau yak3 sou33 and that the sentences were read by multiple speakers.

The order of the stimulus presentation as well as which key was labeled with

which word was randomized across participants, and participants received 3 short

breaks during the experiment, which took about 45 minutes.
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3.2.1.4 Data analysis

Statistical analysis was performed in R (R Development Core Team, 2010), using

the ggplot2 package for creating graphics (Wickham, 2009). The overall confu-

sion matrix for all stimuli was calculated and further analysis was performed on

the T4 stimulus subset. Data were excluded from analysis for one T4 stimulus

which sounded highly unnatural after resynthesis and yielded long reaction times

that were outliers. The T4 stimulus subset was analyzed using mixed effects

regression implemented by the lme4 package of Bates and Maechler (2010), a

statistical method that is now prevalent in language research (Baayen, 2008).

Mixed effects models, unlike ANOVAs, allow a unified treatment of continuous

and categorical variables, are robust against unbalanced/missing data (present in

this experiment), are robust against violations of homoscedasticity and sphericity,

and allow the inclusion of complex random effects structure (Baayen et al., 2008;

Baayen, 2008; Quené and van den Bergh, 2004). Logarithmically-transformed

reaction times were analyzed using linear mixed effects regression.5 Response ac-

curacy for T4 stimuli was analyzed with mixed effects logistic regression since the

dependent variable was binary: correct or incorrect. Linear models were fit using

restricted maximum likelihood and logistic models with Laplace-approximated

maximum likelihood (Pinheiro and Bates, 2000).

Forward model selection was used to test the partial effect of creak (present,

absent) on correctness of T4 response and log reaction time while controlling for

other variables: syllable (S1, S2), speaker sex (male, female), and speaker

(8 levels). syllable indicates whether a stimulus was uttered as the first (S1)

or second (S2) syllable in the bitone; speaker sex refers to the sex of the

5Log-transforming reaction times is standardly performed to help satisfy the assumption of
a normally distributed dependent variable in linear regression, although researchers have also
argued for other transformations, e.g. Kliegl et al. (2010).
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speaker of a given stimulus. speaker was included as a non-interacted fixed effect

to control for variability due to the different speakers who uttered the stimuli.

Each of the fixed effects was a categorical variable and coded using numeric

indicator variables (1,0); they were then mean centered to reduce collinearity and

for model interpretability, e.g. for balanced binary variables, contrasts were set

as -0.5 and 0.5 (Gelman and Hill, 2007, Ch. 4). Random intercepts for subject

(the listener) were included, providing individual by-listener adjustments for T4

response correctness or log reaction time.

Successive nested models in the forward model selection were compared us-

ing likelihood ratio tests. Model likelihood is the probability of the data given

the estimated model parameters, and for large datasets, differences in deviance

(−2 log(likelihood)) between nested models fit to the same data by maximum

likelihood approximately follow a χ2 distribution.6 Thus, χ2 tests, with degrees

of freedom corresponding to the difference in the number of parameters between

two models under comparison, were used to test for significant improvement in

fit to the data while penalizing for model complexity (p < 0.05) (Baayen, 2008,

p. 253).

3.2.2 Results

Overall, identification accuracy for T4 was high (70.51%, SE=10.93%) compared

to that of other tones, and the tone most confusable with T4 was T6, cf. Table

3.2.7 Breaking down the 70.51% identification accuracy for T4 by phonation,

6For linear mixed effects models, models were refit for model comparison using maximum
likelihood rather than restricted maximum likelihood.

7The identification accuracy of the other tones is not the focus of this paper, but we note
the following: first, perhaps because T3 (lau33) is uncommon, its identification accuracy was
the poorest (32.23%). Perhaps because of that and also because most of the Cantonese level
tones are towards the bottom of the pitch range, T1 was identified most accurately (85.94%).
Also, there was a bias for T5 responses: 55.99% of T2 stimuli were identified as T5s, replicating
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Tonal identification response (%)

Actual T1 T2 T3 T4 T5 T6

T1 85.94 0.85 8.53 0.07 1.04 3.58

T2 1.30 35.09 3.65 1.50 55.99 2.47

T3 27.28 1.04 32.23 3.39 3.12 32.94

T4 1.89 3.19 2.93 70.51 8.07 13.41

T5 2.34 9.77 7.68 5.34 63.93 10.94

T6 8.46 1.76 20.25 15.56 4.56 49.41

Table 3.2: Overall confusion matrix for tones in Exp. 1

identification accuracy for T4 was 82.03% (SE=2.27%) for creaky T4s but only

58.98% (SE=3.57%) for noncreaky T4s. This boost in T4 identification accuracy

due to the presence of creak was significant, as described below.

Model comparison (Table 3.3) showed that the best model for the probabil-

ity of correctly identifying T4 with random intercepts for listeners included the

following fixed effects: creak, syllable, speaker sex, and the interaction

syllable:speaker sex.

All coefficients in the model were significant at the 0.05 level, cf. Table 3.4.

Overall, the presence of creak significantly increased the probability of correct

identification of T4, and the probability of correct identification was significantly

higher for syllable 1 stimuli than syllable 2 stimuli from female speakers.

There was a nonsignificant trend of shorter reaction times for correct T4

identification of syllable 2 stimuli when creak was present. We performed model

comparison of mixed effects linear models, with log reaction time as the de-

pendent variable and the same fixed and random effects as for the logistic models

the pattern of results for sentence-medial tones in Ma et al. (2005).
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Fixed effects included in model

syll sex creak syll:sex LL ratio test

X X

X X X χ2(1) = 17.02, p = 2.0× 10−4

X X X X χ2(1) = 13.20, p = 2.8× 10−4

Table 3.3: Summary of comparison of mixed effects logistic models for T4 identifi-

cation correctness, including the fixed effects that were compared and the results

of log-likelihood ratio tests for each successive comparison.

Coefficient SE Z p

(Intercept) 1.10 0.16 6.9 <.0001

creak 1.29 0.13 10.0 <.0001

syll −0.50 0.13 −4.0 <.0001

speaker sex −0.30 0.13 −2.2 <.05

syll:speaker sex 0.91 0.25 3.6 <.001

speaker 0.14 0.03 5.1 <.0001

Table 3.4: Summary of fixed effects for mixed effects logistic model of correctness

of T4 identification

discussed above. A log likelihood ratio test supported adding creak:syllable

to a model with the fixed effects creak, syllable and speaker, χ2(1) =

3.50, p = 0.062. While this was not significant at the 0.05 level, it was due to

faster reaction time for creaky syllable 2 stimuli (mean log reaction time 0.41/[s]

(SE 0.05)) than noncreaky ones (mean log reaction time 0.45/[s] (SE 0.04)).
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3.2.3 Discussion

Experiment 1 demonstrated that the presence of creak significantly improved

identification accuracy of Cantonese Tone 4, confirming our hypothesis about

identification accuracy. There was also a trend for shorter reaction times in the

presence of creak for a subset of the stimuli, the stimuli drawn from the second

syllable of the target bitone in the recorded corpus, providing support for but

not confirming our hypothesis for reaction time.

To our knowledge, this is the first experimental result suggesting that native

speakers of a tone language with phonation as a non-contrastive cue for tone

show improved tonal identification accuracy due to phonation cues. Belotel-

Grenié and Grenié (1997)’s results showed an earlier isolation point for Mandarin

T3 when creak was present, but could not show that listeners improved tonal

identification accuracy for T3 because the listeners’ performance was at ceiling in

their task. Because our task was designed to be difficult—with randomly ordered

multispeaker stimuli drawn from varying tonal contexts in connected speech and

a larger, more confusable tonal inventory (six response choices rather than four,

including three level tones and two rises)—the performance of listeners was not

at ceiling.

There was also a significant effect of the interaction between syllable and

speaker sex on tonal identification accuracy: syllable 1 stimuli were identified

with higher accuracy than syllable 2 stimuli for the stimuli from female speakers.

Post-hoc acoustic/auditory inspection of individual files suggested that for the

female speakers, the syllable 1 stimuli included many strikingly canonical exem-

plars of T4, i.e. exemplars not heavily co-articulated with neighboring tones. This

may have been partly because carryover (left-to-right) tonal co-articulation has

been shown to be stronger than anticipatory (right-to-left) in Cantonese (Flynn,
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2003; Wong, 2006), so that the variability in tones following syllable 1 in the

recorded productions affected the realization of syllable 1 less than the variabil-

ity in tones preceding syllable 2 affected the realization of syllable 2. This may

have been why tonal identification accuracy was high for syllable 1 stimuli from

females, especially for noncreaky syllable 1 stimuli (M =79.17%, SE=4.17) com-

pared to noncreaky syllable 2 stimuli (M =53.65%, SE=4.16). Such variability in

the stimuli also probably contributed to the restriction of the trend for shorter

reaction times for creaky T4s to the second syllable of the recorded bitone. Lis-

teners may have been closer to being at ceiling for stimuli drawn from the first

syllable for noncreaky stimuli, so that the additional cue of creaky voice had a

smaller effect on reaction times for the first syllable than the second.

The results from Experiment 1 suggest that listeners in Cantonese are aided

in identifying T4 if creak is present. However, the stimuli used were drawn from

naturally produced speech. Thus, not only were the creaky T4s very heterogenous

in an uncontrolled way, but also, there was no way to control for absolute f0 or f0

movement in noncreaky regions of the naturalistic stimuli. Thus, we were unable

to obtain direct information about sensitivity of listeners to details of creak, and

we could not factor out creaky voice from other possible cues, such as low and/or

falling pitch preceding the creaky region, or even the percept of low pitch in creak.

3.3 Experiment 2: Resynthesis of f0 and creaky voice

quality

Experiment 1 showed that the presence of creak aided Cantonese listeners in

identifying Tone 4 and discriminating Tone 4 from Tone 6. In this follow-up

experiment, our goals were: (1) to attempt to demonstrate sensitivity to creaky
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voice independent of the concomitant low absolute pitch or pitch movement cues

that may have been present in Experiment 1, (2) to probe the integration of

creaky voice with contextual pitch cues for discriminating Tone 4 from Tone

6, and (3) to examine how/if the variation in the realization of creaky voice

influences tone perception. For this purpose, we resynthesized and cross-spliced

speech materials from the production corpus described in §3.2.1.1 to generate

stimuli pitting pitch vs. creaky voice cues for a two-alternative forced choice task

between lexical items with Cantonese Tones 4 and 6.

Using Wong and Diehl (2003)’s result that Cantonese listeners use the f0 of the

preceding context to judge relative pitch for identifying a tone, we manipulated

pitch perception by manipulating the f0 of the preceding context rather than the

target syllable. Thus, the stimulus set consisted of disyllables, where the f0 of the

first syllable was resynthesized to produce an 8-step continuum in increments of

half-semitones, and the second syllable, the target syllable to be identified, was

created by cross-splicing stimuli with different creak qualities. To follow up on

Experiment 1 and try to demonstrate sensitivity to creaky voice independent of

concomitant pitch cues, we also tested a monosyllable stimulus set consisting of

only the target syllables.

To preclude the availability of absolute low pitch as a cue, we chose stimuli

from a high-pitched male and female and resynthesized the f0 of the target syllable

to be ambiguous between that of Tone 4 and 6 for the speakers, based on f0

ranges in the corpus and perception by two native speakers. Because the vocal

fry mechanism is contingent on a low f0 (Gerratt and Kreiman, 2001), we selected

instances of nonmodal phonation to cross-splice that were due to period doubling,

with “pairs of vocal cycles alternating in period and/or amplitude” in which

a pitch percept is ill-defined due to bitonality (Gerratt and Kreiman, 2001).
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However, since a pitch in period doubled speech might still be detected based

on the pulse width between glottal pulses, we included period doubled stimuli

with varying pulse widths and strength of pitch percept. Finally, we varied the

duration of the nonmodal region cross-spliced into the target syllable, since pitch

was perceptible in the modal region of the target before the nonmodal region.

3.3.1 Methods

3.3.1.1 Materials

Productions of the Cantonese syllable /lau/ for Tones 4 and 6 were selected from

one male and one female speaker with high pitch ranges out of the production

corpus described in Experiment 1 §3.2.1.1. For each speaker, the utterance with

the lowest level contour instance of lau6 immediately following the sentence frame

lei5 jiu3 was selected. We did not want a f0 fall over the target syllable because

that would introduce f0 information that might bias the listener towards a T4

response, and inspection of the production corpus indicated that both T4 and T6

occurred with level f0 variants. Three additional utterances were selected for each

speaker to exhibit a range of variation in creaky realizations of Tone 4 immediately

following lei5 jiu3. All Tone 4 selections were period doubled: one had a wider

pulse width (“wide”), another a narrower width (“narrow”), and one had a very

clear and audible pitch percept and its f0 was trackable by Praat’s autocorrelation

algorithm (“pitched”) (Boersma and Weenink, 2010), see Figs. 3.1 and 3.2. For

the male speaker, no “pitched” stimulus could be found, so a “pitched” stimulus

from another male speaker was used. A stimulus was considered period doubled

based on narrow-band spectrographic evidence of subharmonics.

The utterances were processed and resynthesized in Praat. The disyllable jiu

lau was extracted for each utterance, and the f0 of the utterance was resynthesized
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using PSOLA as follows: (1) the absolute f0 of the diphthong /au/ was resyn-

thesized to a value ambiguous between Tone 4/6 for high range males/females in

the production corpus (180 Hz for the female; 107 Hz for the male); (2) the f0 of

/jiu/ preceding /lau/ was resynthesized to be 31 Hz higher than the f0 of /au/,

a relative f0 difference ambiguous between the f0 drop from T3 to T4/T6 in the

production corpus for high pitch range speakers, and then incremented upwards

and downwards in half-semitone steps from 1.5 semitones below to 2 semitones

above that; (3) f0 was linearly interpolated in Hz over /l/ between the offset of

/jiu/ and onset of /au/.

The creaky T4 /au/s were cross-spliced with the T6 in /jiu lau/ utterances.

Durations of /jiu/, /l/ and /au/ were equalized to their averages between all

utterances to facilitate naturalistic cross-splicing and also to standardize dura-

tions for reaction time measurements. The average amplitude of /jiu lau/ for

the two non-creaky T6 utterances was resynthesized to 78 dB, and that of the

/au/s extracted from the creaky T4 utterances to 72 dB, a lower value to aid

in creating a continuous percept across the splice boundary, but high enough

to not create a low amplitude cue for T4. For each creaky /au/ token, three

splice points were chosen: “heavy”, “medium”, and “light”, where “light” in-

cluded the minimal amount of speech material to induce a creaky percept in the

/au/ for the first author; “heavy” included the maximal amount of material that

was creaky; “medium” was set at the approximate midpoint between the other

two. All splice points were taken at the nearest zero crossing in a low amplitude

regions. Monosyllable /lau/ stimuli were extracted from the /jiu lau/ stimuli.

The disyllable stimulus set included 3 repetitions of each modal stimulus, and

2 Speaker (male, female) × 8 contextual fo shift (8 f0 levels) × [3 creak

type (wide, narrow, pitched) × 3 creak proportion (heavy, medium, light) +
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Figure 3.1: Waveforms of /au/ (17.85 ms) from the female narrow pulse width

(top) and wide pulse width (bottom) bisyllabic stimuli with heavy creak propor-

tion.

3 repetitions of modal stimuli] for 192 stimuli in total; the monosyllable stimulus

set was balanced between creaky and modal stimuli: 2 Speaker × (3 creak

type × 3 creak proportion + 9 repetitions of modal stimuli) for 36 stimuli

in total.

3.3.1.2 Participants

The participants were 20 native Cantonese speakers who were born and raised in

Hong Kong and currently living there. There were 10 males (age 20.3±1.9 years)

and 10 females (age 21.8±1.7 years). They were recruited from the local Hong

Kong university student population and received cash compensation.
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Figure 3.2: Spectrograms of the female bisyllabic stimuli. Wide-band spectro-

gram (max 5000 Hz) of /au/ from narrow width stimulus, showing doubled pulses

(top). Narrow-band spectrogram (max 1000 Hz) of pitched stimulus, showing

sub-harmonics (bottom).
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3.3.1.3 Procedure

Participants were tested in a sound-treated booth. The perception experiment

was run as in Experiment 1, except that the task of the participants was to iden-

tify each stimulus by a keyboard press of either a key labeled with the character

for lau4 (a common family name) or one labeled with lau6 ‘drip’. Participants

were asked to respond as quickly and accurately as possible and told they would

be timed. Each participant heard each stimulus set twice. The order of the

different stimulus sets as well as which key was labeled with which word was

randomized across participants, and participants received a short break between

stimulus sets. Testing took about 30-40 minutes.

Participants were told that the stimuli were extracted from sentences lei5

jiu3 zi6 ‘You want word’ in the discourse context of looking up a word in

a dictionary and a sheet with the sentence was placed before them during the

experiment. Participants were also told that there was more than one speaker,

that the speakers were asked to say the sentences in different pitch ranges, and

that the relative proportions of the two different words played during each trial

was randomized (so they wouldn’t know what proportion to expect.).

3.3.1.4 Data analysis

The partial effects on response choice (T4 or T6) and log reaction time of: (i)

creak (present,absent), (ii) details of creak, (iii) and for the bisyllables, also

contextual fo shift, were analyzed using mixed effects regression analy-

sis for the monosyllable and bisyllable stimulus sets using the procedures de-

scribed in §3.3.1.4. Details of creak were expressed in two ways: (i) using two

factors, creak type (none, pitched, wide, narrow) and creak proportion

(none, light, medium, heavy), with the none levels dropped in analyses exclud-
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ing the noncreaky stimuli, and (ii) using a factor crossing those two, creak

quality (10 levels: none, and the 3×3 crossing of the creaky levels of creak

type/proportion). Following Wong and Diehl (2003, p. 47), contextual fo

shift was treated as a continuous, interval-scale variable since it was based on

the semitone scale.

replicate was included as a noninteracted fixed effect covariate (since each

stimulus set was presented twice). Unless otherwise indicated, the replicate

factor did not have a significant effect in model comparison and thus was omitted

from final models. Because listeners showed systematically different patterns of

behavior for the male and female stimulus sets, models were fitted to each of the

two stimulus sets separately rather than including speaker sex as a covariate

in a single model, except for one case, where the fixed effects structure was very

simple (Table 3.5). Not including warranted random effects structure could result

in anticonservative estimates of p-values for fixed effects (Janda et al., 2010, p.

43-44). Thus, in modeling random effects structure, we tested for the inclusion

of random slopes and the correlation of random slopes with random intercepts

(Baayen, 2008, p. 251-2), in addition to random intercepts, since exploratory data

analysis suggested considerable individual variation not only in unconditioned T4

response bias and reaction times, but also in the effect of the variables of interest.

3.3.2 Results

Our general research questions for Experiment 2, reiterated, were: (i) How do

listeners integrate creaky voice with pitch cues? and (ii) Are listeners sensitive to

details of creak? To answer these, we analyzed both the lexical decision response

choices (§3.3.2.1) and reaction times for the responses (§3.3.2.2).

In the analysis of response choice, before examining the interaction of the
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presence of creak and contextual f0 information, we first examined their inde-

pendent effects—the effect of creak for the monosyllable stimuli (which had no

immediate contextual f0 information) and the effect of contextual f0 information,

contextual fo shift, for the noncreaky bisyllable stimuli. We asked: (a) Does

the presence of creak bias listeners toward T4 responses? (b) Does contextual f0

information bias responses, with higher f0 on the preceding syllable biasing for

T4 responses?, and then we followed up to address our main questions: (c) How

does the presence of creak interact with contextual f0 information for listeners?

(d) Do listeners show sensitivity to glottal pulse width and duration of nonmodal

phonation?

3.3.2.1 Lexical decision responses

Does the presence of creak bias listeners toward T4 responses? Anal-

ysis of the monosyllable data indicated that the presence of creak biases for T4

responses in the absence of immediate contextual f0 information, as well as in

the absence of absolute low pitch and pitch movement cues which may have been

present in the naturalistic stimuli in Experiment 1. Likelihood ratio tests (Table

3.5) showed that the best model for the probability of a T4 response for the

monosyllables included the following fixed effects: speaker sex, creak and

the interaction speaker sex:creak and random slopes for creak correlated

with intercepts for listeners, and uncorrelated random slopes for speaker sex.

Thus, creak had a significant effect in determining the probability of a T4 re-

sponse. The final model predictions for mean levels indicated that T4 responses

are more likely for creaky stimuli than noncreaky stimuli by factors of 3.8 and

6.0 for the female and male stimuli, respectively. Inspection of individual subject

data supported the random effects structure; there was variability in the effect
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on the probability of a T4 response across listeners due to the presence of creak,

correlated with listeners’ baseline bias for a T4 response, and between the male

and female stimulus sets.

We also checked if the effect that the presence of creak biased listeners toward

T4 responses held even for only stimuli with light creak proportion. It did.

Model comparison with random intercepts for listeners and correlated random

slopes for creak within data subsets for only the light creak proportion vs.

none contrasts supported the inclusion of creak in the model over one with no

fixed effects (male: χ2
m(1) = 17.56, p = 2.8 × 10−5, female: χ2

f (1) = 6.25, p =

1.2 × 10−2). Because the narrow creak type male stimuli had particularly long

intervals of nonmodal phonation, we also further checked that the T4 biasing

effect of nonmodal phonation held for the non-narrow creak types for the male

stimuli, and it did (χ2(1) = 9.97, p = 1.6× 10−3).

Fixed effects included in model

sex creak sex:creak LL ratio test

X

X X χ2(1) = 22.10, p = 2.6× 10−6

X X X χ2(1) = 9.50, p = 2.1× 10−3

Table 3.5: Summary of comparison of mixed effects logistic models for T4 re-

sponses for monosyllable stimuli, including the fixed effects that were compared

and the results of log-likelihood ratio tests for each successive comparison.

Does contextual f0 information bias responses? Analysis of the noncreaky

bisyllable data indicated that contextual f0 information (contextual fo shift)

biases responses: in the logistic model, the probability of a T4 response increases
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and stimuli speaker sex for monosyllabic stimuli. Error bars show ±1SE).
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as f0 increases on the preceding syllable to the target syllable; we expected this

since as f0 on the preceding syllable becomes higher relative to the target syl-

lable, pitch on the target syllable is perceived to be contextually lower. For

both the male and female stimulus subsets, model comparison indicated final

models with random intercepts by-listener and uncorrelated random slopes for

contextual fo shift. replicate was also a significant covariate for the male

subset, with a lower probability of T4 response in the second replicate. Like-

lihood ratio tests supported the inclusion of contextual fo shift as a fixed

effect above the random effects (and replicate covariate for the male stimuli),

χ2
m(1) = 20.21, p = 6.9×10−6 and χ2

f (1) = 31.38, p = 2.1×10−8 for the male and

female stimuli, respectively. The model coefficient for contextual fo shift for

both stimulus sets was positive (Tables 3.6, 3.7), indicating that the probability

of a T4 response increases with contextual fo shift in the noncreaky bisyl-

labic stimuli, consistent with the positive slope of the dashed-line T4 response

curves for the noncreaky stimuli in Figure 3.4.

Coefficient SE Z p

(Intercept) −1.77 0.39 −4.5 <.0001

replicate −0.64 0.19 −3.3 <.001

contextual fo shift 1.19 0.21 5.6 <.0001

Table 3.6: Summary of fixed effects for mixed logit model of T4 responses in

noncreaky male bisyllables

How does the presence of creak interact with contextual f0 information

for listeners? Model comparison for T4 responses in the full male and female

bisyllabic stimuli supported the inclusion of both contextual fo shift and
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Coefficient SE Z p

(Intercept) −0.39 0.28 −1.4 >0.2

contextual fo shift 1.86 0.23 8.3 <.0001

Table 3.7: Summary of fixed effects for mixed logit model of T4 responses in

noncreaky female bisyllables

creak as well as their interaction as fixed effects (Table 3.8). For both the

male and female stimuli, the final models had positive coefficients for the main

effects of contextual fo shift and creak but negative ones for the interaction

(Tables 3.9, 3.10). That is, for both creaky and noncreaky stimuli, there is a

higher probability of a T4 response with higher contextual fo shift, but

for a given contextual fo shift, the probability of a T4 response is higher

if the stimulus is creaky, and for the creaky stimuli, the increase in probability

with contextual fo shift is smaller than for the is smaller than for the is

smaller than for the noncreaky stimuli: the slope of the logit T4 response curve

as a function of contextual fo shift is less steep for creaky than noncreaky

stimuli. This is reflected in Figure 3.4, in which the response curves for the

creaky stimuli are both globally shifted upward from and flatter than those for

the noncreaky stimuli.

The final models included random intercepts by listener and random slopes

for contextual fo shift and creak, with a correlated slope for contextual

fo shift for the male stimuli. Inspection of individual listener data for the male

stimuli supported the correlated random slope: listeners with steep slopes for the

T4 response curve as a function of contextual fo shift, had a low proportion

of T4 responses for low contextual fo shift, i.e., a low intercept, while sub-

jects with flatter response curves had higher intercepts; for female stimuli, most
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subjects showed steep slopes and low intercepts.

Fixed effects included in model

fo shift creak fo shift:creak LL ratio test

X χ2
m(1) = 14.10, p = 1.7× 10−4

X X χ2
m(1) = 29.73, p = 5.0× 10−8

X X X χ2
m(1) = 15.98, p = 6.4× 10−5

X χ2
f (1) = 34.35, p = 4.6× 10−9

X X χ2
f (1) = 18.45, p = 1.7× 10−5

X X X χ2
f (1) = 26.72, p = 2.4× 10−7

Table 3.8: Summary of comparison of mixed effects logistic models for T4 re-

sponses for bisyllabic stimuli, including the fixed effects that were compared and

the results of log-likelihood ratio tests for each successive comparison. Results

for the male stimuli are shown, and then results for the female stimuli.

Coefficient SE Z p

(Intercept) 0.19 0.22 0.9 >0.4

contextual fo shift 0.68 0.14 4.8 <.0001

creak 2.30 0.29 7.8 <.0001

contextual fo shift:creak −0.41 0.11 −3.9 <.0001

Table 3.9: Summary of fixed effects for mixed effects logistic model of T4 re-

sponses in male bisyllables

Do listeners show sensitivity to glottal pulse width and duration of

nonmodal phonation? Model comparison for the creaky male and female

monosyllabic and bisyllabic stimuli provided evidence for the inclusion of creak
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Coefficient SE Z p

(Intercept) 0.84 0.19 4.4 <.0001

contextual fo shift 1.26 0.13 9.4 <.0001

creak 1.56 0.31 5.1 <.0001

contextual fo shift:creak −0.56 0.11 −5.0 <.0001

Table 3.10: Summary of fixed effects for mixed effects logistic model of T4 re-

sponses in female bisyllables

quality in models of the probability of a T4 response. We used treatment

contrasts for creak quality, without centering, as the data were balanced for

this factor, and since we were simply initially checking for an effect of variability

in the realization of nonmodal phonation. For the monosyllabic creaky stimuli,

model comparison supported the inclusion of creak quality in the model over

one with only random intercepts for listeners (male: χ2
m(8) = 131.25, p < 2.2 ×

10−16, female: χ2
f (8) = 59.02, p = 7.24 × 10−10). For the bisyllabic creaky

stimuli, the inclusion of creak quality was supported over models with only

contextual fo shift and correlated random slopes for contextual fo shift

and random intercepts by listener (male: χ2
m(8) = 536.06, p < 2.2×10−16, female:

χ2
f (8) = 220.97, p = 2.2× 10−16).

For a more detailed understanding of how details of the creak affected tonal

perception, we performed model comparisons for the monosyllables with creak

proportion, creak type, and their interaction. We parametrized the creak

proportion contrasts within the creaky stimuli as successive differences of the

three levels: light, medium, and heavy (Venables and Ripley, 2002, p. 148-149).

For both male and female stimuli, a higher proportion of creak significantly in-

creased the probability of a T4 response (male: χ2
m(2) = 32.31, p = 9.6 × 10−8,
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female: χ2
f (2) = 49.60, p = 1.7×10−11) between both pairs of successive levels for

the male stimuli, and between the light and medium levels for the female stimuli.

Results for creak type were inconsistent; for the male stimuli, the probability

of a T4 response was highest for the narrow condition, followed by the wide and

then the pitched condition, without any interaction with creak proportion

(Table 3.11); for the female stimuli, there was a significant effect of creak type:

creak proportion, and the probability of a T4 response was higher for the

wide pulse widths than narrow and pitched pulse widths, but only within the

heavy proportion condition (Fig. 3.7). Within the heavy creaky female stimuli, a

contrast for wide pulse width was supported by model comparison over one with

only by-listener random intercepts: χ2(1) = 7.60, p = 5.8× 10−3.

Coefficient SE Z p

(Intercept) 1.15 0.36 3.2 <.01

creak prop.:medium-light 1.51 0.36 4.2 <.0001

creak prop.:heavy-medium 0.96 0.39 2.5 <.05

creak type:narrow 3.47 0.43 8.0 <.0001

creak type:wide 2.40 0.37 6.5 <.0001

Table 3.11: Summary of mixed logit model of T4 responses for creak propor-

tion and creak type in creaky male monosyllables

For the bisyllabic stimuli, interactions between the creak quality factors were

quite complex and we only present a sketch of patterns of results based on ex-

ploratory data analysis here, as the main result that details of the nonmodal

phonation affect listeners’ tonal identification responses has already been shown

from model comparisons with creak quality. The main patterns of results

are shown in Figures 3.6 and 3.7. The female and the narrow and wide creak
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type conditions for the male stimuli show that when contextual fo shift

was at its upper limits so that the preceding syllable f0 was relatively high, the

proportion of T4 responses tended to asymptote to a ceiling value, regardless of

creak quality.

For the female stimulus set, there is a noticeable split between the light and

no creak conditions vs. the medium/heavy creak conditions at the bottom of

the range of contextual fo shift such that the light/no creak conditions

yielded fewer T4 responses. There is also a split at the bottom of the range for

contextual fo shift for the male stimuli, but in which the no creak/pitched

stimuli and wide pulse width/light proportion stimuli yield few T4 responses, but

the other wide pulse width and all the narrow pulse width conditions yield a large

proportion of T4 responses. In fact, the proportion of T4 responses for the heavy

narrow/wide conditions for the male stimuli is quite stable over contextual

fo shift and appears to be at ceiling, around 80-90%; in contrast, the pitched

stimuli show a much steeper slope, with the proportion of T4 responses increasing

as contextual fo shift increases. At the very highest contextual fo shift

steps, the proportion of T4 response actually decreased for some listeners, which

may have been due to stimuli naturalness problems.

3.3.2.2 Reaction times

Another measure of potential listener sensitivity to creak and details of creak is

how the presence of creak and creak quality affected (log-transformed) reaction

times for listener response. To probe this, we analyzed the effect of the presence of

creak on log-transformed reaction times for T4 responses for the male and female

monosyllables and bisyllables, and then also the effect of creak type and creak

proportion within creaky subsets of those stimuli. In the analyses, we excluded
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subjects from the analysis who did not have T4 responses for all conditions for the

factor being tested. For the bisyllables, we restricted the analysis to the reference

level “0” contextual fo shift level, in which listener response was both close

to a halfway split between T4 and T6 overall, and also all but one listener had

T4 responses for each creak proportion condition.

Model comparison with linear mixed models yielded no support for an ef-

fect of the presence of creak on log-transformed reaction times for any of the

stimulus subsets. However, we did find limited support for an effect of creak

proportion and creak type for T4 responses, within creaky stimuli. For the

female creaky monosyllables, there was a trend for faster reaction times from

medium to heavy creak proportion (χ2(2) = 5.49, p = 0.064 for the inclusion of

creak proportion in a null model with correlated random slopes for repli-

cate); for female creaky bisyllable stimuli at “0” contextual fo shift, model

comparison supported the inclusion of creak proportion for log-transformed

reaction times for T4 responses (χ2(2) = 10.68, p = 4.80 × 10−3, comparing a

model with creak proportion to one without, with random slopes for repli-

cate). Reaction times were faster for heavy than medium creak proportion

(βmedium−heavy = −0.15, pMCMC = 0.002). At the highest contextual fo

shift level, 2 semitones higher, we found no evidence for an effect of creak

proportion.

Finally we checked for an effect of creak type in reaction times for the

monosyllables. For the creaky male stimuli, with 5 subjects excluded, we found

that reaction times were faster for the narrow pulse width condition relative to

the other creak type conditions (χ2(1) = 4.94, p = 0.026 for the inclusion of

the fixed effect creak type: narrow) in addition to replicate and random

slopes correlated with by-subject intercepts for replicate.
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3.3.3 Discussion

In Experiment 2, we built on the result from Experiment 1 showing that listen-

ers were sensitive to creak in Cantonese tonal perception with a more controlled

experiment, where listeners were tasked to choose between T4 and its most con-

fusable tone, T6. We controlled for f0 preceding the region of nonmodal phona-

tion, creating an 8-step continuum of f0 on the syllable preceding the syllable

to be identified, and interpolated from that f0 through the onset consonant to a

constant f0 at the onset of the target vowel, in an f0 range ambiguous between

T4 and T6. In the target vowel, we used cross-splicing to control the duration

of the nonmodal region, as well as characteristics of the glottal pulse train in

that region, and the nonmodal regions were period doubled, with a bitonal pitch

percept.

Under these controlled conditions, we found, firstly, that evidence that the

presence of creak biases listeners towards T4 responses, in the absence of im-

mediate contextual f0 information, when only the isolated target syllables were

presented, and in the absence of absolute low pitch and pitch movement cues

that may have been present in the naturalistic T4 stimuli in Experiment 1. This

bias was present even for the subset of creaky stimuli with a light proportion of

creak, where creak was just perceptible.

From analyzing listener responses for the subset of bisyllabic stimuli that

were noncreaky, we found that contextual f0 information alone also biases lis-

tener responses: the proportion of T4 responses increased as f0 on the preceding

syllable increased. Wong and Diehl (2003) previously showed that preceding f0

strongly biases listener responses for the Cantonese level tones, T1, T3, and T6,

and Huang and Holt (2009) showed that preceding f0 also affected perception of

the Tone 2 rise in Mandarin, the first clear demonstration of an effect of preced-
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ing context on contour tone perception. As described in §3.3.1.1, we exploited

allophonic variation which can cause T4 and T6 both to appear to have level f0

contours, although T4 is considered a fall, based on its citation form, while T6 is

considered a level tone. Thus, we showed that preceding context affects contour

tone perception in Cantonese, although we tested listeners on only level variants

of T4 since we were controlling for pitch cues in the experiment.8.

For the noncreaky bisyllabic stimuli, we also found that for the male stimuli,

the proportion of T4 responses decreased for the second replicate; on inspection of

individual listener data, we found that this pattern occurred for about 3 subjects,

who showed about a 20% drop in T4 responses, whereas a handful of subjects

exhibited the opposite pattern. Perhaps some subjects became sensitized to the

presence of creak and this caused them to shift their decision rule for T4 to more

heavily weight the presence of creak.

We also found that the presence of creak interacts with contextual f0 informa-

tion for the listener: the presence of creak biased listeners towards T4 responses,

but to different degrees depending on the f0 of the preceding syllable. When the

f0 on the preceding syllable was at its lowest, the presence of creak could outweigh

the preceding f0 information such that in the presence of creak at a given f0 shift,

listeners sometimes changed their identification response from T6 to T4. When

the f0 on the preceding syllable was at its highest for female stimuli, the pres-

ence of creak did not greatly affect tonal perception because the f0 information

already biased listeners towards a T4 percept, which the presence of creak must

have reinforced. Patterning along these lines, for the highest contextual fo

shift level, reaction times for T4 responses for the creaky female bisyllable stim-

8While every noncreaky target syllable had a level f0 contour, if creak provides a kind of
low pitch percept, then perhaps a stimulus with creak was effectively a contour tone, since its
f0 contour fell into a creaky region persisting to the offset of the stimulus
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uli were unaffected by creak proportion, although reaction times were faster

for heavy than medium creak proportion for an f0 shift of 0, in the middle of

the contextual fo shift range. Overall, the presence of creak had the effect

of diminishing the effect of the preceding f0 context on tonal perception: the T4

response curves for creaky stimuli as a function of preceding f0 were flatter than

those for the noncreaky stimuli. In the middle range for the f0 of the preceding

syllable, the presence of creak appeared to be integrated with f0 information ad-

ditively, on average across listeners, as the slopes of the response curves for the

creaky and non-creaky stimuli were similar (Figure 3.4).

Finally, Experiment 2 provided evidence that listeners are sensitive to details

of creak such as glottal pulse width and the duration of nonmodal phonation,

since the inclusion of creak quality (crossing creak type and creak pro-

portion) was supported by model comparison for both the creaky subsets for

both the male and female monosyllabic and bisyllabic stimuli. Generally, there

was a higher T4 response proportion as creak proportion increased, for male and

female monosyllable and bisyllable stimuli. For the female bisyllable stimuli, the

reaction times for T4 responses were also faster for heavy creak proportion

than medium at the reference level “0” of contextual fo shift, as mentioned

above, and medium and heavy creak proportion stimuli generally yielded higher

proportions of T4 responses than the light creak proportion stimuli, particularly

when the preceding syllable had low f0 (a T6 biasing context).

There were also effects of creak type. We expected, for instance, the wide

glottal pulse stimuli to provide a relatively lower pitch percept than the narrow

glottal pulse stimuli and thus favor a T4 response. Indeed, for the female mono-

syllables, the wide glottal pulse condition significantly increased the probability

of T4 response relative to the narrow glottal pulse stimuli and stimuli with strong
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pitch percept, for the stimulus subset with heavy creak proportion. For the male

monosyllables, though, the narrow pulse width stimuli actually yielded a higher

T4 response proportion than the wide condition, but this may have because the

narrow pulse condition for the male had longer durations of nonmodal phonation

than the other creak type conditions; the narrow pulse condition also yielded

faster reaction times than the other creak types. For the bisyllables, the effect of

creak type was less clear. In the male bisyllables, the pitched stimuli generally

yielded a relatively lower proportion of T4 responses especially when the pre-

ceding syllable had low f0 compared to the wide and narrow glottal pulse width

stimuli, we are hesitant to take this as evidence for a strong effect of creak type

because the pitched condition for males involved cross-splicing speech produced

by another vocal tract.

Overall, we did see some evidence for an effect of creak type on tonal

perception, which was sometimes consistent with listener sensitivity to pitch per-

cepts in period doubled regions (for the female monosyllables), but the effect of

duration of nonmodal phonation (creak proportion) was more robust.

3.4 General discussion

In this paper, we showed that listeners are sensitive to the presence and detailed

properties of creaky voice in native lexical tone perception in Cantonese, a lan-

guage in which voice quality cues are considered to be non-contrastive in tonal

representation. To our knowledge, Experiment 1 is the first demonstration that

creaky voice can improve tonal identification accuracy in a tonal language with

non-contrastive phonation. Previous experiments on the role of creaky voice in

Mandarin tonal perception either could not show improvement in tonal identifi-

cation accuracy because listeners were at ceiling in the task.
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Both Experiment 1 and 2 demonstrated that voice quality cues affect tonal

perception, even in languages without contrastive phonation. Thus, it is neces-

sary to consider voice quality-related parameters for understanding human tonal

representation in a potentially wide range of tonal languages. Furthermore, Ex-

periment 2 showed that listener sensitivity to properties of creaky voice, the

percept of a certain range of nonmodal phonation, affects linguistic cognition.

Listeners’ tonal identification and reaction times for identification were affected

by not only the duration of nonmodal phonation in the speech signal, but also

by characteristics of the glottal pulse train.

In all, our perceptual studies suggest that tone languages with non-contrastive

phonation have a system of suprasegmental lexical contrast on the vowel/rime

that is isomorphic to that of register languages: in these tone languages, while

pitch cues are criterial for defining tonal categories, tendencies for phonation

characteristics are criterial as well; in register languages, while phonation cues

are criterial for defining registers, tendencies for pitch characteristics are criterial

as well. Just as Henderson (1952, p. 151) writes of Cambodian (Khmer), that

“the pitch ranges of the two registers may sometimes overlap, though what I

shall call the second register tends to be accompanied by lower pitch than the

first register”, so too can creaky voice accompany both T4 and T6 (and all other

tones) in Cantonese, though T4 tends to be realized with creaky voice more

often. Furthermore, given more recent evidence that pitch cues may be criterial

in register languages as well (Abramson et al., 2004, 2007), it seems that there

may be a “fuzzy boundary” between tone and register languages (Abramson and

Luangthongkum, 2009).

What our study is unable to directly address is how sensitivity to voice quality

cues in tonal perception in a tonal language with noncontrastive phonation, as
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well as in tonal languages in general, is reflected in maps from the speech signal

to tonal concepts. Similarly and more concretely, even if our results suggest that

automatic tonal recognition would benefit by extracting acoustic parameters from

the speech signal beyond f0, they do not pinpoint what these parameters might

be.

Ideas about what these parameters might be can be fruitfully discussed in

terms of automatic speech recognition, where the necessity of parameterizing

the speech signal for computational modeling yields sharper definitions of speech

sounds. Manual correction and smoothing of f0 contours or mapping missing

values from f0 detection to a low f0 value below human pitch ranges to create a

real-valued parameter cannot capture the results of Experiment 2. Listeners in

Experiment 2 didn’t simply categorize any stimuli with creak as T4, especially

if the contextual pitch cues biased for T6 because of relatively low f0 on the

preceding syllable. Thus, period doubled nonmodal phonation, at least, does not

seem to simply be interpreted by listeners as an extra-low absolute f0 value in

tonal perception. However, other parameters calculated as part of f0 detection

algorithms are candidates for parameterizing the creaky voice percept for tonal

recognition, such as correlation values from the generator function for candidate

f0 estimates.

Work on the detection and classification of nonmodal phonation provides an-

other source for potential parameters (Deshmukh et al., 2005; Surana and Slifka,

2006; Vishnubhotla and Espy-Wilson, 2007; Ishi et al., 2008) for the creaky voice

percept in human tonal representation. Something common about parameter sets

from this literature is that they all include parameters familiar from f0 detection.

Surana and Slifka (2006) and Vishnubhotla and Espy-Wilson (2007) both use

thresholds on pitch confidence, calculated from the autocorrelation peak and the
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average magnitude difference function, respectively, to classify frames with irreg-

ular phonation, and Ishi et al. (2008) uses a periodicity measure based on the

autocorrelation function for the detection of vocal fry.

It may be methodologically useful to consider idealized f0 contours which

are continuous, devoid of segmental and voice quality-related perturbations, but

they seem to be a “rough and handy, seat-of-the-pants” abstraction rather than

a “well-defined level of phonetic representation” (Pierrehumbert, 1990, p. 387).

The similar parameters from f0 detection and the detection of irregular phona-

tion underscore the findings of this paper that f0 is one of many interacting

components of voice quality in representations of lexical tones in human cogni-

tion in a potentially wide range of tone languages, not just ones with contrastive

phonation. This finding parallels recent perceptual work suggesting that neither

phonation nor pitch cues alone, but both kinds of cues together, discriminate

registers in human perception in Burmese, a register language (Gruber, 2011),

and suggests more of a continuum between register and tone languages systems

than sharp differences.

In fact, the effect of variable realizations of a phonation type on tonal per-

ception illustrated here in a tone language with nonconstrastive phonation is

likely to be present even in tone languages with contrastive phonation, although

we know of no such studies addressing this. The lack of such studies is surely

due in part to our poor understanding of how phonation types are generated,

meaning that the knowledge necessary to design experiments finely controlling

parameters of phonation is limited at best. Studying how pitch and phonation

cues, their acoustic correlates, and other components of the voice source inter-

act to understand human cognition and improve automatic tonal recognition can

most efficiently proceed from interdisciplinary collaborations between engineers,
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psychophysicists, otolaryngologists, and linguists.
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Figure 3.4: Overall proportion of T4 responses as a function of contextual

fo shift conditioned on the presence of creak and speaker sex for bisyllabic

stimuli, aggregated across listeners. The 0 point for contextual fo shift

indicates the base resynthesized f0 level, from which the contextual fo shift

continuum was created in increments of half-semitones. Ribbons show ±1SE. For

the noncreaky stimuli, the response curve for female stimuli is much steeper than

for male stimuli; for both the male and female stimuli, the response curve is less

steep for the creaky stimuli and globally shifted upward from the response curve

for the noncreaky stimuli.

138



Proportion of creak

P
ro

po
rt

io
n 

of
 T

4 
re

sp
on

se
s

0.0

0.2

0.4

0.6

0.8

light medium heavy

Creak type
pitched
narrow
wide
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creak proportion within creak type for female creaky monosyllabic stim-

uli, aggregated across listeners. Error bars show ±1SE. The proportion of T4

responses is higher for the wide creak type condition than the other two creak

types within the heavy creak proportion condition.
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fo shift, conditioned on creak quality for male creaky monosyllabic stimuli,
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shift, conditioned on creak Quality for female creaky monosyllabic stimuli,

aggregated across listeners. Ribbons show ±1SE.
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CHAPTER 4

Temporal resolution in tonal representations: a

case study with Cantonese tones

4.1 Introduction

While the previous two chapters have addressed potential sources of complexity

in the definition of tonal maps, this chapter considers evidence consistent with

restrictive structure in the definition of tonal maps. The inclusion of contex-

tual information (Chapter 2) and voice source information beyond fundamental

frequency (Chapter 3) in the domain of tonal maps potentially contributes to

complexity in the hypothesis space of possible tonal maps because it increases

the dimensionality of tonal spaces.

However, viewed through the lens of Vapnik-Chervonenkis (VC) dimension,

the cardinality of the set of parameters used in describing the class of possible

tonal maps—the usual sense of dimensionality—is not the most revealing com-

plexity metric for characterizing the learnability of the class of possible tonal map:

a class of maps defined with just one parameter may have infinite VC dimension.

A frequently given example of such a class is the family of indicator functions

of sinusoids of arbitrary frequency I (sin(αx)) (Hastie et al., 2009, 237–238). As

the frequency of the sinusoid, α, approaches infinity so does the number of points

that can be shattered—this family is arbitrarily wiggly. In contrast, the family
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of indicator functions from rays defined as a set of real numbers greater than a

threshold θ, r(θ) = {x ∈ R |θ ≤ x}—also defined with a single dimension—has a

VC dimension of 2. The rays define a much more rigidly structured hypothesis

space than the sinusoids do, though both define 1-dimensional learning problems.

Is the class of possible tonal maps arbitrarily wiggly? Considering for the

sake of illustration tonal maps defined over only pitch values, are there tonal

maps including mappings ŃŘŃŃŔŐŁŃ£ → Tone X, ŁŔŁŃŘŐŃŃ£ → Tone Y ? The typological

evidence available tentatively suggests not, at least for tones uttered in isolation.

Maddieson (1977, 1978) make a distinction between “simple” and “complex”

contours: a complex contour has an inflection point (it is minimally bidirectional),

and while Maddieson (1978, p. 347) alludes to the occurrence of tridirectional

contours,1 Maddieson (1977, 1978) only explicitly discuss fall-rises and rise-falls

as complex contours. Stating that there is a (small) finite bound on the wiggliness

or flexibility of the class of tonal maps is an informal way of stating that the class

has (small) finite VC dimension, which is precisely the characterization of the

class that we discussed as guaranteeing learnability in Chapter 1. Thus, finding

evidence consistent with such a bound is an important step in establishing the

learnability of tonal maps.

One consequence of a constraint on the wiggliness of tonal maps would be that

fine-grained attention to the unfolding in time of utterances of tones would not be

necessary for good separability in the classification of tones of any tone language.

For instance, if the class of tonal maps consisted of 2nd order polynomials defined

over some space, then a minimum of two samples over the relevant tonal domain

would be required to define the polynomial, but if the class was much more wiggly

and consisted of 7th order polynomials, then the minimum number of samples

1Jun (2000) describes boundary tones in the Korean intonation system as having even more
inflection points than this—up to five for the HLHL% or LHLH% tones.
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would be seven.2 Thus, the goal of this chapter is to establish evidence that

fine-grained attention to temporal resolution in the speech signal is not necessary

for good separability in the classification of the tones of Cantonese. This negative

result would be admittedly weak but nevertheless positive evidence for the finite

VC dimension of tonal maps in human languages.

Previous studies that have touched on the wiggliness of tonal maps have stud-

ied the use of piecewise linear or polynomial functions for approximating pitch

contours, e.g. Hirst and Espesser (1993); Taylor (2000); Andruski and Costello

(2004); Kochanski et al. (2005); Hermes (2006). Perceptual studies that present

listeners with tones resynthesized with particular restrictive parameterizations,

e.g. as polynomials of a certain degree, can probe if the restrictive parameteri-

zation chosen is a close approximation to that in actual human tonal maps by

collecting similarity judgments between the resyntheses and original stimuli (Li

and Lee, 2007). In this chapter, we back off from imposing a hypothesized re-

strictive parameterization on the listener and focus on manipulating the sampling

resolution of the speech signal available to the listener by replacing uniformly

spaced intervals of the speech signal with noise. This syntagmatic issue of sam-

pling resolution is a more general one than the exact (or approximate) restrictive

parameterization of tonal maps—it is about establishing the existence of such a

restrictive parameterization—and it is orthogonal to questions about the paradig-

matic set of parameters that are referred to in tonal maps (e.g. do tonal maps

reference amplitude cues?): the listener may sample whatever information from

2A related idea from signal processing is aliasing in sampling, which is exploited in strobe
light special effects on the dance floor in discotheques. A dancer under a strobe light appears
to move in discrete steps at a slower speed than he is actually moving because the strobe light
is flashing (sampling the movement) at a rate much slower than the dancer’s movements. If a
signal is undersampled, then the samples taken cannot distinguish between the original signal
and an alias of lower frequency.
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the speech signal is available.3

To our knowledge, this is the first perceptual study explicitly about sampling

resolution in tones. It has been long been taken for granted but not empirically

validated that fine sampling resolution of the speech signal is not necessary in

tones in linguistics, and discussions of sampling resolution have only appeared

in computational studies. Chao, who introduced the iconic tone letters (Chao,

1930) used in the International Phonetic Alphabet for representing linguistic

tone, wrote: “the exact shape of the time-pitch curve, so far as I have observed,

has never been a necessary distinctive feature, given the starting and ending

points, or the turning point, if any, on the five-point scale” (Chao, 1968, 25),

and tone letters are understood to have up to 3 samples, e.g. ŁŔ£. Additionally,

Laniran (1992) argues for two targets per tone in Yoruba, a tone language with

high, mid, and low level tones, and Barry and Blamey (2004) argues for acoustic

Cantonese tonal spaces in R2 defined over onset and offset f0 values based on

perceptual dimensions hypothesized from multidimensional scaling analyses of

cross-linguistic tonal perception (Gandour and Harshman, 1978; Gandour, 1981,

1983).

In support of the linguistic intuition about the sufficiency of sparse tempo-

ral resolution for good tonal separability, Tian et al. (2004)’s automatic tonal

recognition study of Mandarin found that sparse temporal resolution, with 4

samples/tone, can outperform fine-grained sampling with 1 sample/10 ms, con-

cluding that “detailed information is useless for tone discrimination” (Tian et al.,

2004, I-107). However, in a study of unsupervised learning of Mandarin tones,

Gauthier et al. (2007) extracted 30 samples of f0 or 28 samples of f0 velocity

3However, the manipulation used is limited to fixing the samples from which all parame-
ters are extracted to be the same and thus to fixing the same sampling resolution across all
parameters sampled from the speech signal.
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per syllable, a frame shift on the order of 10 ms, and Zhang and Hirose (2004)’s

hidden Markov model based Mandarin tonal recognizer used a 10 ms frame shift,

while other Mandarin and Cantonese tonal recognizers have used a simple time

warping-like (time normalization) sampling scheme of 3-5 f0 averages or frame

values over uniformly divided subsegments of (part of) the syllable (Peng and

Wang, 2005; Qian et al., 2007; Wang and Levow, 2008; Zhou et al., 2008). In

sum, the computational literature has not settled on the fineness of sampling

resolution to use in features extraction from the speech signal for tones.

To connect our perceptual study of sampling resolution with the tonal rec-

ognizer literature, we provided an experimental context for tonal identification

limited in a way to be similar to characteristics of feature extraction in automatic

tonal recognition. We used tritone stimuli, as most recent automatic tonal recog-

nizers use acoustic feature extraction from a temporal window extending beyond

a single tone to its neighbors (Zhang and Hirose, 2000; Levow, 2005; Qian et al.,

2007), and we used stimuli from multiple speakers like in the speaker-independent

tonal recognition tasks in Peng and Wang (2005); Qian et al. (2007). We also

resynthesized the syllable durations of the tritones to be fixed at their grand aver-

age to simulate the commonly employed preprocessing step of time normalization

to the syllable.

Our experimental manipulation of temporal resolution in the signal used in-

terrupting noise to create a 5-step gradient of sampling resolution (frame shifts)

and make uniformly distributed “samples” or windows from the speech signal

available to the listener, a very simple treatment designed to simulate the com-

mon uniformly sampled vector time series feature extraction procedure in auto-

matic tonal recognition. To address our research question, we compared the tonal

identification accuracy of listeners between the different sampling resolution con-
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ditions. We also performed a proof-of-concept machine classification experiment

of the experimental stimuli to see if the tones were well-separated under some

known acoustic parametrization of the speech signal extracted with low sampling

resolution to gain insight into how good perceptual separability of the Cantonese

tones might be possible under low sampling resolution.

We chose to perform the experiment in Cantonese, for the ease of finding a

sample of speakers large enough for the experimental design and because the six

tones of Cantonese comprise a good exemplar tone inventory in having level tones

(high level T1, 55,
Ă
£; mid level T3, 33, Ă£; low level T6, 22, Ă£), rising tones (high

rising T2, 25,Ğ£; low rising T5 23, Ě£), and falling tones (T4, 21, Ą£), cf. Figure 4.2

(Matthews and Yip, 1994).4 While most tone perception experiments have been

done in Mandarin, the Mandarin tonal inventory lacks level tone contrasts, but

most tone languages have at least one level tone contrast (Maddieson, 1978).

In the rest of the chapter, we discuss the speech materials used in the percep-

tion experiment and computational modeling (§4.2), the perception experiment

(§4.3), the computational modeling (§4.4) and conclude with a general discussion

(§4.5).

4.2 Speech materials

4.2.1 Recordings

The stimuli were recorded by ten native Cantonese speakers, five of whose record-

ings were further processed for the rest of the study: these three males and two

4Descriptions vary in the exact 5-value integers assigned to the tones, but the exact integers
used here are not of importance; we use these designations as mnemonic names for the tonal
categories throughout the paper. Some descriptions also distinguish these tones from the shorter
entering tones (high, mid, and low level) which occur in syllables with unreleased stop codas.
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females were chosen to span a wide pitch range, cf. §4.2.3, Table 4.1, to provide

a representative instance of the challenge of a multispeaker task. Four of the

speakers were born and raised in Hong Kong and recorded in the phonetics lab

sound-attenuated booth at the City University of Hong Kong. One was born

and raised in Macau and recorded in the phonetics lab sound-attenuated booth

at University of California, Los Angeles. They were recruited from the local uni-

versity student population and received cash compensation. All speakers were

recorded digitally at 22,050 Hz/16 bits with PCQuirerX (Scicon R&D, Inc.) or

at 44.1kHz/16 bits with a digital recorder.

The stimuli were created from the tritone 〈waiĂ£, {wai
Ă
£, Ę£, Ă£, Ą£, Ě£, Ă£} , matĂ£ 〉

(wai33 wai mat3) extracted from sentences of the form: lei25/35 yiu33 wai33 wai

mat3 deng/geng33 ‘you want Wai-Wai to clean the lamp/mirror ’ with the target,

the second /wai/, ranging over all six Cantonese tones. The lexical meanings of

the orthographic characters we associated with tones 55, 25, 33, 21, 23, and 22

were, respectively, ‘power’, ‘appoint’, ‘fear’, ‘surround’, ‘great’, and ‘stomach’,

and speakers were asked to treat /wai wai/ as a (nonce) proper name. The

orthographic characters were chosen to be the most familiar ones for each tone by

a native speaker. Each speaker actually recorded 5 fluent repetitions of sentences

containing all 36 bitone combinations over /wai wai/ (with the sentences not used

as stimuli for the perception experiment serving as fillers), from which we chose

the last three repetitions of each Tone 33-Tone X bitone for the stimuli set for

a total of 90 tritones, 18 from each speaker, 3 distinct repetitions per speaker

per Tone 33-Tone X bitone.5 A Cantonese native speaker trained in linguistics

and phonetics checked that none of the speakers had tonal mergers and that the

speakers uttered the tones correctly. No speakers produced Tone 55 with a 53

5In three cases, we chose another repetition than those listed above due to sound quality of
the recording.
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high fall contour, a variant more common in the past.

4.2.2 Resynthesis

All stimuli were resampled to 22kHz; tritones were extracted using a rectangu-

lar window, and RMS amplitude was rescaled to 75 dB in Praat (Boersma and

Weenink, 2010). All syllable durations were resynthesized using PSOLA imple-

mented in Praat to be have a target duration of 241 ms, the grand mean of the

syllable durations, for a total duration of 740 ms for the tritone, to simulate

time normalization to the syllable.6 The manipulated condition, sampling res-

olution, was varied from the intact signal, to 7, 5, 3, and 2 uniformly spaced

samples (time-slices or windows) of 30.41 ms each per syllable. The sample du-

ration was well below the minimum 130 ms duration Greenberg and Zee (1977)

found necessary for perception of a nonzero f0 velocity, “contouricity”, in speech,

and also on the same order of magnitude as the standard frame size in automated

short-term analysis f0 detection (Hess, 1983, 343).

The sampling resolution manipulation involved intermittently deleting the

recorded speech signal and replacing it with white noise low-pass-filtered at 5000

Hz that was 10dB higher than the average signal amplitude, cf. Figure 4.1. Sim-

ilar stimuli manipulations are used in phonemic restoration studies, in which

listeners perceive segmental speech sounds to be present in the presence of noise

even if they are not (Miller and Licklider, 1950; Warren, 1970; Bashford et al.,

1992; Samuel, 1996). We alternated the speech signal with louder noise rather

than silence because the intelligibility of the speech is well-known to be minimal

when alternated with silent gaps; however, continuity of the speech percept can

be maintained when the speech signal is alternated with a louder sound that

6The PSOLA algorithm resynthesis added about 18 ms over the target duration over the
course of the tritone.
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is a potential masker of the fainter speech signal. This phenomenon is in fact

the basis of phonemic restoration. Broadband noise has typically been used in

segmental phoneme restoration experiments, and we chose to use white noise low-

pass-filtered at 5000 Hz in particular because it has also been used in studying

the continuity of tones through interrupting noise (Ciocca and Bregman, 1987).

Additionally, we chose white noise to avoid providing any information that the lis-

tener might use in perceiving the interrupted speech, since Bashford et al. (1996)

showed a boost in the intelligibility of speech interrupted by speech-modulated

noise rather than white noise.

The noise was generated using using the MLP Matlab toolbox (Grassi and

Soranzo, 2009). Since the sample durations were fixed, the noise duration varied

for different sampling resolution conditions, but was fixed within a condition,

ranging from 90ms to 4ms from the 2- to 7- sample condition, respectively, as

shown in Figure 4.1. The noise intervals included raised-cosine onset and offset

ramps that were 10% of the duration of the noise interval to reduce audible

spectral splatter (Hant and Alwan, 2003); the duration of the ramps was chosen

to be relative to the duration of the noise interval since the noise interval duration

varied between sampling resolution conditions. Half-duration noise intervals were

used at the onset and offset of the tritone, with extra noise padding at the offset

if needed to replace the entirety of the duration of the intact speech signal. Due

to a programming error not detected until after the participants were tested,

the last noise interval for the 2- and 3-sample stimuli was of full rather than half

duration, extending beyond the duration of the intact tritone. However, the same

information from the speech signal was available to the listeners that would have

been present without the added noise.
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(a) Intact (b) 7 samples/syllable

(c) 5 samples/syllable (d) 3 samples/syllable

(e) 2 samples/syllable

Figure 4.1: Waveforms and spectrograms of a Cantonese tritone Tone 33 - Tone

21 - Tone 33 stimulus under different sampling resolution conditions from intact,

to 7, 5, 3, and 2 samples/syllable.
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4.2.3 Acoustic analysis of resynthesized speech materials

We performed an acoustic analysis of the resynthesized speech materials based

on extracted f0 tracks, cf. Fig. 4.2. The f0 values were extracted using RAPT

(Talkin, 1995), a commonly used f0 detection algorithm, used in Qian et al.

(2007)’s Cantonese supratone tonal recognizer. Speaker-specific pitch floors and

ceilings were set to the 1st and 99th quantiles minus or plus 30% of the range,

respectively, a similar procedure to the pre-processing procedures in De Looze

and Rauzy (2009); Evanini and Lai (2010).7 Otherwise, the default parameter

settings, including a 10ms frame shift were used. The first and last frames were

excluded because there were often large discontinuities between the estimated f0

for these frames and estimated f0 in the adjacent ones due to edge effects in the

f0 detection algorithm, so there were a total of 69 f0 values, which were taken

as the available f0 information in the intact condition. Unvoiced frames were

assigned f0 values using linear interpolation. To model the f0 information present

in the degraded sampling resolution conditions, the mean f0 was calculated

over each unmasked region over frames falling within each of these regions. Thus,

there were 6 f0 values estimated for each tritone in the 2-sample condition, one per

unmasked region, and 9, 15, and 21 f0 values in the 3, 5, and 7-sample conditions,

respectively. The f0 values were also log-transformed and then standardized as

z-scores using speaker-specific means and standard deviations. The calculated

raw and transformed f0 range of the stimuli for each speaker is given in Table

4.1.

7The majority of the f0 values were in the mid range since each tritone stimulus consisted
of two mid-level tones (33), yielding a center-heavy distribution of f0 values; thus, we could not
use less extreme quantiles as in De Looze and Rauzy (2009); Evanini and Lai (2010) because
they resulted in severe compression of the estimated range.
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Figure 4.2: f0 contours extracted with RAPT using speaker-specific pitch floors

and ceilings, showing the parameterization of f0 contours for the intact and 2-

sample conditions for computational modeling. Unvoiced frames were assigned

f0 values by linear interpolation. (left panel) log-transformed f0 extracted with

10ms frameshift and averaged over each of 21 samples in the 7 samples/syllable

condition. (right panel) log-transformed f0 values averaged over each of 6 samples

in the 2 samples/syllable condition.
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Speaker f0 (Hz) log f0 z-score

f4 [165.89,241.00] [5.11,5.48] [-3.35,2.35]

f3 [106.42,179.47] [4.67,5.19] [-5.78,1.83]

m6 [125.88,176.36] [4.84,5.17] [-2.89,3.21]

m1 [83.87,145.92] [4.43,4.98] [-3.48,1.97]

m5 [61.44,140.20] [4.12,4.94] [-5.08,3.60]

Table 4.1: Speaker-specific f0 range in speech materials, measured in Hz, after

log-transformation, and after standardization of log f0 with respect to speaker

means and standard deviations. The speakers are ordered from highest to lowest

maximum f0, following the same order from top to bottom in the plot of f0

contours by speaker in Figure 4.2.

4.3 Tonal perception experiment

Using the speech materials described in the preceding section, §4.2, we performed

a human tonal perception experiment with native Cantonese speakers.

4.3.1 Methods

4.3.1.1 Participants

The participants were 39 native Cantonese speakers. There were 20 males (age

18.9±1.8 years) and 19 females (age 21.9±1.9 years). Participants were recruited

from the local university student population at the City University of Hong Kong

and at the University of California, Los Angeles and received cash compensation.

All but three of the subjects (born/raised in Guangzhou and Shanwei, China)

was born and/or raised in Hong Kong, China. Of the 10 participants tested in
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Los Angeles, all used Cantonese on a daily basis and had been in the United

States for 3 to 8 years.

4.3.1.2 Procedure

Participants were tested in sound-attenuated booths in the phonetics laboratories

at the City University of Hong Kong and University of California, Los Angeles.

The perception experiment was run in MATLAB using Psychophysics Toolbox

extensions (Pelli, 1997; Brainard, 1997). Stimuli were played from an Echo Indigo

IO sound card on a laptop over studio monitor headphones at a standardized,

comfortable volume. The interstimulus interval was 3s.

Participants were told that the stimuli were extracted from sentences lei25/35

yiu33 wai33 wai mat3 geng33 ‘You want NAME to clean the mirror,’ and they were

given a sheet of paper with orthographic characters which showed what stimuli

was being played, and what word they were to identify: wai33 mat3. The stim-

uli were blocked by sampling resolution; block order was pseudorandomized to be

roughly uniformly distributed over sampling resolution condition across partici-

pants, and stimuli were randomized within blocks. The task of the participants

was to lexically identify the target syllable in each stimulus by a keyboard press

of one of six keys labeled with the characters for the minimal tone set over wai.

Participants were asked to respond as quickly and accurately as possible and told

that they would be timed.

4.3.1.3 Data analysis

Statistical analysis was performed in R (R Development Core Team, 2010), and

the ggplot2 package was used for creating graphics (Wickham, 2009). Tonal iden-

tification accuracy was analyzed using mixed effects linear regression (Pinheiro
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and Bates, 2000) implemented by the lme4 package (Bates and Maechler, 2010).

The interest in this study, as in most psychological experiments, was to generalize

beyond the sample of listeners and the sample of speakers from which stimuli were

drawn. Mixed effects models allowed the inclusion of both the listener and the

speaker as crossed random effects (Baayen et al., 2008), allowing simultaneous

generalization to other listeners and speakers (Quené and van den Bergh, 2008).

Forward model selection was used to test the partial effects of sampling

resolution and the inclusion of random effects in modeling tonal identification

accuracy aggregated over tones and for each individual tone. Successive nested

models were compared using likelihood ratio tests, and χ2 tests were used to test

for significant improvement in fit to the data while penalizing for model com-

plexity (Baayen, 2008, p. 253), since differences in deviance (−2 log(likelihood))

between nested models fit to the same data by maximum likelihood approximately

follow a χ2 distribution in the large-sample limit. All models of identification ac-

curacy included random intercepts by listener and speaker (of the stimuli), and

all models except that for Tone 21 identification accuracy also included random

slopes by listener correlated with the random intercepts by listener for sampling

resolution, since model comparison did not support the inclusion of the ran-

dom slopes for Tone 21. The inclusion of listener-specific random effects in the

models helped account for listener variation in tonal identification accuracy in

the intact condition and the effect of sampling resolution on accuracy, as

well as for the effect of block order variation between listeners.

Tukey tests for all pairwise comparisons of sampling resolution condi-

tions were performed on the mixed effects models using the multcomp package

(Hothorn et al., 2008) to compare tonal identification accuracy between sam-

pling resolution conditions. The Tukey tests were based on t distributions
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with 22 degrees of freedom: 4 degrees of freedom for the 5-level fixed effect

sampling resolution, 2 in total for the variance of each of the two random

intercepts, 4 for the variance parameters for the random slopes for sampling

resolution, 10 for the correlation parameters for the random slopes (
(
5
2

)
since

the fixed effect had 5 levels), 1 for the fixed effect intercept term, and 1 for the

residual variance; for the model of Tone 21 accuracy which didn’t include random

slopes, t distributions with 8 degrees of freedom were used. Statistical significance

wherever discussed was determined at the 0.05 level.

4.3.2 Results

In the following two sections, we report on overall tonal identification accuracy

(§4.3.2.1) and identification accuracy of individual tones (§4.3.2.2) conditioned on

sampling resolution. All listeners and items were included in the analyses. While

all listeners performed at above chance levels in the intact condition overall, not

all listeners performed above chance levels for each individual tone, cf. §4.3.3,

and in addition, there were three items that were not identified at above chance

levels. However, when we repeated statistical analyses excluding these listeners

and items, the statistical pattern of results did not change.

4.3.2.1 Overall tonal identification accuracy conditioned on sampling

resolution

As Figure 4.3 shows, tonal identification accuracy aggregated across listeners

was well above chance for all sampling resolution conditions, even down to 2

samples/syllable, when there was less than a quarter of the original speech signal

present. Bonferroni-corrected t-tests of by-subject tonal identification accuracy

against the at-chance level (1/6) showed that performance for each condition was
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significantly above chance, p < 2.2×10−16 for every condition. In addition, mixed

effects linear regression indicated that aggregated across tones, tonal identifica-

tion accuracy for the 5 and 7 samples/syllable conditions was not significantly

different from that in the intact condition. Since exploratory data analysis showed

that the effect of sampling resolution on tonal identification accuracy varied

by tone, though (see Figures 4.4 and 4.5), we focus our description of statistical

results on separate models of identification accuracy for each of the six tones.

158



Sampling resolution

P
er

ce
nt

 o
f c

or
re

ct
 r

es
po

ns
es

0

10

20

30

40

50

60

70

67.46 (2.91)

52.54 (2.90)

60.51 (2.41)

64.13 (2.76)
66.38 (2.83)

samp2 samp3 samp5 samp7 intact

Figure 4.3: Comparison of Cantonese native listeners’ overall tonal identification

accuracy for different sampling resolutions. Error bars show ±1SE. Tonal identifi-

cation accuracy was maintained from the intact signal down to 5 samples/syllable.

For all sampling resolutions, performance was also well-above chance (the hori-

zontal line shows identification accuracy for at-chance performance (1/6, 17%)).
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4.3.2.2 Identification accuracy of individual tones conditioned on sam-

pling resolution

Figure 4.4 displays tonal identification accuracy for each individual tone condi-

tioned on sampling resolution; for the tones in the higher pitch range of

the Cantonese tonal inventory—Tones 55, 25, and 33—as well as Tone 21, tonal

identification accuracy was generally high and little affected by sampling resolu-

tion down to 3 samples/syllable, but for two tones in the low pitch range, Tones

23 and 22, accuracy was generally low, and accuracy for Tone 23 was also par-

ticularly sensitive to decreasing sampling resolution. The bold-faced columns in

Table 4.2, the confusion matrix aggregated over listeners conditioned on tone

and sampling resolution, show that Tones 55, 25, 33, and 21 were identified

with between 70 and 90% accuracy in the intact condition and around 60 to 90%

accuracy and around 50 to 70% accuracy in the 3- and 2-sample conditions, re-

spectively. In contrast, accuracy for Tones 23 and 22 was only 45 to 50% in the

intact condition, dropping to 30 to 40% and to just below 30% for the 3- and

2-sample conditions, respectively.
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Figure 4.4: Cantonese native listener’s tonal identification accuracy for each of

the six tones conditioned on sampling resolution. Accuracy for all tones

except Tone 23 was limited in sensitivity to sampling resolution down to

the 3-sample condition. Tones 23 and 22 were identified with strikingly lower

accuracy overall than the other tones.
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Actual Response

55 25 33 21 23 22

55

samp2 72.82 4.27 9.23 1.37 9.74 2.56

samp3 87.01 0.85 5.30 0.34 4.96 1.54

samp5 83.08 1.37 6.84 0.17 6.32 2.22

samp7 86.32 0.51 4.96 0.68 4.62 2.91

intact 84.96 1.37 6.32 0.68 5.81 0.85

25

samp2 2.05 62.91 9.23 3.59 18.29 3.93

samp3 1.03 70.09 5.30 1.54 20.51 1.54

samp5 0.85 74.19 4.10 1.20 18.29 1.37

samp7 0.85 71.62 6.32 0.17 18.97 2.05

intact 0.34 75.04 3.25 1.03 18.97 1.37

33

samp2 5.98 5.98 52.99 3.25 17.95 13.85

samp3 9.40 2.56 62.22 2.91 9.06 13.85

samp5 8.89 2.91 69.23 2.74 6.50 9.74

samp7 8.72 2.39 67.01 2.22 8.03 11.62

intact 9.06 1.20 70.26 1.71 4.96 12.82

21

samp2 1.88 9.06 4.96 70.60 9.40 4.10

samp3 1.03 9.40 4.10 71.28 8.03 6.15

samp5 0.85 8.89 3.08 75.56 7.01 4.62

samp7 1.03 7.69 3.25 76.07 6.50 5.47

162



intact 1.03 5.30 4.62 78.80 4.96 5.30

23

samp2 2.91 23.93 17.61 13.85 28.38 13.33

samp3 3.08 17.61 17.26 12.82 32.14 17.09

samp5 1.37 17.95 16.41 6.84 45.64 11.79

samp7 2.56 20.34 12.65 4.27 52.48 7.69

intact 2.91 17.44 14.53 4.27 50.43 10.43

22

samp2 3.08 9.06 17.78 19.66 22.91 27.52

samp3 3.93 4.27 20.51 18.80 12.14 40.34

samp5 4.10 5.64 17.78 17.78 17.61 37.09

samp7 3.08 3.42 19.15 13.16 16.41 44.79

intact 4.27 4.10 18.97 11.28 16.07 45.30

Table 4.2: Confusion matrices for each tone for the different sampling resolution

conditions.
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Results from Tukey tests for comparisons between the degraded and intact

conditions (Table 4.3) showed that identification accuracy was not significantly

different between the 5- and 7-sample conditions and the intact condition for

any tone. For the 3-sample condition, only Tones 21 and 23 were identified with

significantly lower accuracy than in the intact condition. However, for all tones

but Tone 25, identification accuracy was significantly different in the 2-sample

condition from that in the intact condition, and for Tone 25, there was a trend

(p = 0.069) for a difference in accuracy.

55 25 33 21 23 22

samp2 0.022 0.069 0.002 0.016 < 0.0001 0.001

samp3 0.54 0.58 0.11 0.026 < 0.0001 0.39

Table 4.3: Summary of comparisons of identification accuracy conditioned on

tone in the 2- and 3-sample conditions with the intact condition. There were no

significant differences for the comparisons for 5- or 7-sample conditions so they

are not displayed. The p-values estimated from Tukey post-hoc comparisons are

given; in all cases of a significant difference, accuracy was lower in the degraded

condition than in the intact condition.

Results from Tukey tests for comparisons of accuracy between the degraded

conditions (Table 4.4) showed no significant differences between the 3-, 5-, and

7-sample conditions except for Tone 23, which showed significant differences in

accuracy between all degraded conditions except between the 2- and 3-sample

and between the 5- and 7-sample conditions. There were significant differences

between accuracy in the 2-sample condition and accuracies for all other conditions

for Tones 55 and 33 and between the 2-sample and 3- and 7-sample conditions for

Tone 22. For Tones 25 and 21, there were no significant differences in accuracy
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Resolutions 55 25 33 21 23 22

samp3 - 2 0.010 0.49 0.031 0.99 0.71 0.012

samp5 - 2 0.018 0.097 0.004 0.16 0.001 0.10

samp7 - 2 0.015 0.19 0.002 0.11 < 0.0001 0.002

samp5 - 3 0.50 0.78 0.29 0.26 0.002 0.92

samp7 - 3 0.98 0.99 0.40 0.18 < 0.0001 0.65

Table 4.4: Summary of comparisons for identification accuracy conditioned on

tone between degraded sampling resolution conditions. The p-values esti-

mated by post-hoc Tukey tests is given; in all cases of a significant difference,

accuracy was lower in the more degraded condition than in the less degraded

condition.

between any degraded conditions.

The confusion matrices for the six tones conditioned on sampling resolu-

tion in Table 4.2 and Figure 4.5 show what confusability patterns caused the

significant drops in accuracy as sampling resolution decreased. The tones

identified with lowest accuracy, Tones 23 and 22, were most confusable with Tone

25 and Tone 23, respectively, overall. This pattern of confusability followed a gen-

eral trend shown in other tones: on the one hand, the two rises Tone 25 and Tone

23 were consistently most confusable with one another (around 20% for every

condition), and Tone 33 was most confusable with the other level tones Tones

22 and 55 down to the 5-sample condition, intuitively explainable as confusions

between pitch contours of the same direction (e.g. as confusions along the “di-

rection” dimension in Gandour (1981) multidimensional scaling perceptual space

for Cantonese tones).
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Figure 4.5: Visualization of confusion matrices for each tone for different sample

resolutions. The confusion matrices for a given tone run down a single column,

with the confusion matrix for each sampling resolution condition in a different

row. The horizontal bars display the percentage of responses given for each of the

six different tones; the dark grey bars indicate correct responses, and the error

bars show ±1SE.
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On the other hand, many confusability patterns mixed level and contour tones

and rises with falls, especially with decreasing sampling resolution. Tone 23

may have been most confusable with Tone 25, but showed a 6% increase in

confusability with the Tone 21 fall between the 5- and 3-sample conditions. Tone

22 was most confusable not only with the level tone Tone 33 as mentioned above,

but also the rise and fall Tones 23 and 21, with jumps of 7-8% in confusability

with these contour tones between the intact and 2-sample conditions. Tone 33

may have been most confusable with other level tones down to the 5-sample

condition, but was most confusable with Tone 23 in the 2-sample condition, 13%

and 9% more confusable than in the intact and 3-sample conditions, respectively.

Tone 55 was consistently as confusable with Tone 33 as Tone 23.

4.3.3 Discussion

Results from the human perception experiment support the hypothesis that fine-

grained temporal resolution of the unfolding speech signal in human perception is

not necessary for tonal identification. First, even down to 2 samples per syllable,

with less than a quarter of the duration of the speech signal available to the

listener, overall tonal identification accuracy was well above chance. Moreover,

identification accuracy was maintained from the intact to the 5-sample condition

for every tone, and accuracy between the 3-sample and intact conditions differed

significantly only for 2 of the 6 tones. The programming error in the stimuli noted

earlier that introduced longer noise intervals at stimulus offset in the 2- and 3-

sample conditions (27 and 7 ms, respectively) does not weaken the result that

fine-grained resolution is not necessary for good separability of Cantonese tones

in perception by native listeners. The effect of the error could have only been in

the direction of decreasing accuracy at the two lowest sampling resolution
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conditions due to interference and/or memory effects.

Our results showing significant decreases in tonal identification accuracy from

the intact condition to the 3-sample condition for two of the tones and to the

2-sample condition for almost all tones should not be literally interpreted as

providing evidence that the perceptual space for Cantonese tones has around 3

to 5 samples per syllable. First, the error that added more noise at the offset for

the 2- and 3-sample conditions which may have contributed to the decrease in

identification accuracy for those conditions. In addition, the significantly lower

accuracy (and trend for lower accuracy for Tone 25) in the 2-sample condition

compared to that in the intact condition may have been due in part to a lack

of perceptual continuity caused by the long duration of the interrupting noise

intervals for our particular experiment design. (Recall that manipulation of the

sampling resolution involved an increase of the duration of the noise interval

as sampling resolution decreased.) In support of this conjecture, Dannenbring

(1976) showed that in nonspeech, for pure tones of 250 ms in duration interrupted

by white noise, the mean continuity threshold between perceived continuity and

discontinuity due to the interrupting noise was around 80 and 100ms for steady

state tones and tone glides, respectively. This indicates that the 90-ms noise

interval duration in the 2-sample condition may have been close to the auditory

threshold for perceiving continuity in our stimuli, which were 241 ms in duration.

More generally, the experiment was not designed to test where samples could

be taken (with alignment specified, for instance, with respect to segments or syl-

lables) to maximize tonal separability in the perceptual space, since the samples

were uniformly distributed over the syllable. For our purposes, it was sufficient

to show that there exists some set of samples that maintains tonal separability

of the intact condition even under coarse sampling resolution, even if the set of
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samples provided in the stimuli for a given sampling resolution was not the set

that optimized tonal separability. It is possible that even a single sample per

syllable taken at a timepoint where the separability of the tones is optimal over

the syllable could be sufficient for discriminating tones in natural conditions, al-

though we did not test a 1-sample condition because perceptual continuity of the

stimuli would have been lost under the long noise duration intervals required for

such a condition with our experimental design. Khouw and Ciocca (2007) found

that f0 change over the 6th and 7th out of 8 subsyllabic segments accounted for

about 70% of the variance in a Cantonese tonal identification perception exper-

iment of isolated monosyllables, and in Cantonese (Li et al., 2002, 2004; Wong,

2006) as well as other (South)east asian languages (Mandarin: (Xu, 1997), Thai:

(Gandour et al., 1992), Vietnamese (Han and Kim, 1974)), it has been reported

that rightward (carryover) coarticulation is stronger than leftward (anticipatory)

coarticulation, so that tones in connected speech might be maximally separated

near the offset of the syllable.

While understanding variation in the identification accuracy of individual

tones overall and as a function of sampling resolution is not crucial for

addressing our research question, it is of interest to for insight into how and

why sampling resolution affects tonal identification accuracy. The most striking

variation in overall identification accuracy was the low accuracy for Tones 22

and 23: even in the intact condition, overall identification accuracy was 43% for

these two tones, compared to 77% for the other four. We conjecture that the

low accuracy for Tones 22 and 23 was due in part to tonal mergers in some of

the listeners, because these tones were particularly confusable with other tones

in the context of the mid level tones flanking the target tone to be identified, and

also possibly due to relatively lower lexical frequency of the characters used for
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these two tones in the identification task.8 We also conjecture that Tone 21 was

identified with high accuracy unlike its close neighbors Tones 22 and 23 not only

because it occupied a lower part of the pitch range than them, but also because

of creaky voice quality cues, since Yu and Lam (2011) showed that the presence

of creaky voice cues can boost Tone 21 identification accuracy in Cantonese tone

perception.

It has been reported that it is not unusual for Cantonese native speakers in

Hong Kong in their 20s, the population from which our subjects were sampled,

to have tonal mergers, especially between Tones 33/22, Tones 25/23, and Tones

21/22, e.g. Mok and Wong (2010a,b) and references therein. We did not screen

our listeners for mergers, but post-hoc inspection of individual results suggests

that some of the listeners may have had mergers since they showed systematic

response biases across resolution conditions. There were around 5 subjects who

almost never gave correct responses for Tone 23 regardless of condition, and of

these, two gave mostly Tone 25 responses in the intact condition. There were

also around 5 subjects who rarely gave correct responses for Tone 22 regardless

of condition, and of these, 2 gave mostly Tone 21 responses. Thus, there may

have been subjects with Tone 25/23 and Tone 21/22 mergers.

However, the other subjects who performed poorly overall on Tones 22 and

23 gave incorrect responses distributed over a mix of tones rather than mostly

over a single tone, and some subjects identified Tone 22 as mostly Tone 23 in the

intact condition. We therefore conjecture that the context in which the stimuli

8As a rough estimate of lexical frequencies of the six orthographic characters used in the
identification task, we used the frequencies of the Mandarin cognates, [wei], in the character
frequency list of Modern Chinese from Da (2004). Counts from that text corpus indicated
the following relative frequency percentiles, from the most to least frequent character used
to represent the tones: T2 (26), T4 (21), T1 (20), T5 (9), T6 (3), T3 (3). However, T3
identification accuracy was similar to that of the T2, which had the highest character relative
frequency percentile, and more than 20% higher than that of T5 and T6, while having a
character relative frequency percentile as low as T6.
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were presented—with flanking mid tones (Tone 33)—may have been a context

in which Tones 22 and 23 were particularly confusable with other tones—more

so than the other four tones—since they were mid-low tones that didn’t deviate

much from Tone 33. In support of this, even the 5 listeners who identified tones

in the intact condition with around 90% accuracy, 4 of whom identified tones in

the 2-sample condition with 65-73% accuracy, showed markedly lower accuracies

for Tones 22 and 23 relative to the other tones in the 2-sample condition. They

also exhibited confusion patterns in the 2-sample condition similar to those in the

intact condition for listeners who performed poorly on Tones 22 and 23 overall:

confusion of Tone 23 with Tone 25 and Tone 22 with Tone 23.

These and the other patterns of confusion in the perception experiment showed

that while there were overall, consistent confusions between rises and between

level tones as has been shown in experiments with isolated monosyllables (Fok,

1974; Gandour, 1981; Khouw and Ciocca, 2007), there was also much confu-

sion between tones with different contour shapes and directions in our connected

speech stimuli, especially as sampling resolution decreased. These confusions

may have arisen from uncertainty about the magnitude of rises and falls in pitch

and their alignment with segmental material in the face of degraded sampling

resolution, particularly in the Tone 33 - Tone X - Tone 33 context used in the

experiment.

We could check the role of acoustic separability in the particular context

used in our experiment indirectly by analyzing confusion matrices from previous

perceptual experiments in the literature, but the tonal contexts from those are

generally an isolation/citation context, e.g. Fok (1974); Khouw and Ciocca (2007).

One of the closest matches for context comes from a condition in Ma et al. (2005,

Table 4), a Tone 33 - Tone X - Tone 33 context, and the confusion matrix shows
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relatively low accuracy, close to 50% for Tone 25 and Tone 22, with all other

tonal accuracies around 90% or above. These results match the low Tone 22

accuracy in our experiment, but not other results. We directly tease apart the

role that acoustic separability alone has to play in our experimental stimuli using

computational modeling in the following section.

4.4 Computational modeling

The perception experiment (§4.3) showed that native listeners can classify Can-

tonese tones at well above chance levels—some listeners with accuracy around

70%— even with as few as two 30ms samples per syllable, with less than a quar-

ter of the duration of speech signal available. However, it did not tell us how

listeners might be doing this. In each sample, there are an infinite number of

acoustic parameters available to the listener. Moreover, there is an unbounded

range of evidence outside the speech signal that the listener could bring to bear

on the classification task, including the lexical biases discussed in §4.3.3.

To gain insight into what the listeners could be attending to, we used com-

putational methods to model the classification problem, defined under precise

assumptions. Our purpose was to determine: given a minimal acoustic param-

eterization of the speech signal and abstracting away from other sources of evi-

dence, could the stimuli in our experiment be classified as accurately under the

degraded sampling resolution conditions as with the intact speech signal? To

this end, we defined the raw acoustic parametrization of the stimuli to be: (i)

the set of mean f0 values from each sample, for the degraded conditions, or (ii)

f0 tracks extracted with a 10ms frameshift, for the intact condition. We chose

linear support vector machines (SVMs) as our classifiers (Vapnik, 1995; Cortes

and Vapnik, 1995; Burges, 1998). SVMs are well-understood and widely used in
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machine learning and have been used in automatic tonal recognition, e.g. Levow

(2005); Peng and Wang (2005).

We sketch a geometrical characterization of how they work for the binary

case, e.g. for two tone classes, following Bennett and Bredensteiner (2000). Call

the two classes Class A and B. Each stimulus is parameterized as a real-valued

p-dimensional vector and labeled as belonging to either Class A or B. Thus, the

Class A and B stimuli sets each comprise a set of points in Rp. The SVM algo-

rithm is a way to determine an optimal decision rule to assign a class label to a

stimulus. A linear SVM determines a p−1 dimensional separating hyperplane as

a decision boundary in the parameter space, i.e. a 1-dimensional line for stimuli

parameterized in 2-D space, R2. The SVM algorithm chooses the optimal sepa-

rating hyperplane to be the one that maximizes the distance from the hyperplane

to the Class A and Class B sets.

Which hyperplane is this? Take the convex hulls of the Class A and Class

B sets, the set of points enclosed in the tightest rubber band one can stretch

around the Class A and B sets, respectively. The optimal hyperplane bisects and

is orthogonal to the line segment between the two closest points of the convex

hulls (Boyd and Vandenberghe, 2004, p. 46-49). If Class A and B are linearly

inseparable, i.e. if their convex hulls overlap, then a soft margin SVM algorithm

can be used, which allows for some points to be on the wrong side of the margin

in determining the optimal separating hyperplane, and a soft margin parameter

is tuned to balance the tradeoff between maximizing the margin and minimizing

classification error.

We desire the determined classification rule to generalize beyond the training

data used to choose it. Thus, evaluation of classifier performance is done by

determining classification accuracy on test data, data not in the training data
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set: in this study, we trained classifiers on stimuli from a subset of 4 of 5 of the

speakers and tested the classifiers on the withheld speaker.

4.4.1 Methods

We implemented the linear SVMs using LIBSVM (Chang and Lin, 2001). Because

the SVM algorithm involves calculating Euclidean distances in the parameter

space, it is necessary to scale the data, so that parameters with a greater range

do not dominate the direction of the optimal separating hyperplane relative to

parameters with a smaller range, and it also necessary for the training and test

data to be scaled in the same way. Thus we chose to parameterize the stimuli

using z-score standardized log-transformed f0 rather than f0 in Hz (§4.2.3), cf.

(Levow, 2006, §2.3).

We used the default treatment of multiclass classification in LIBSVM, which

decomposes the 6-way Cantonese tone classification problem as
(
6
2

)
= 15 binary

classification sub-problems, and then uses a voting strategy to combine the 15

decisions. For each sampling resolution condition, we used 5-fold cross-validation

and partitioned our data into 5 folds, one fold per speaker. Rotating across

the folds, a single fold (18 tritones, 1 speaker) was withheld as test data, and

the remaining four folds (4 × 18 = 72 tritones, 4 speakers) were used as train-

ing data. The soft margin parameter was chosen for each rotation using 5-fold

cross-validation on the training data. All classification results, unless otherwise

indicated, are averaged across the results from the 5 rotations, and standard error

for classification accuracy is calculated from the variance of the accuracy over the

5 folds.
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4.4.2 Results

Overall, classification accuracy was higher in the SVM classification than in hu-

man listeners, and there was no significant difference between the SVM classifi-

cation accuracy for any of the sampling resolution conditions (Table 4.5), based

on Bonferroni-corrected t-tests paired by fold. Thus, SVM classification accuracy

with as few as 2 real values per syllable (standardized log-transformed f0), 6 in

total over the tritone, was not statistically different from accuracy with real val-

ues sampled every 10ms, 69 in total over the tritone: an order of magnitude in the

number of real-valued parameters had no effect on classification accuracy! More-

over, classification accuracy was well above chance for all sampling resolution

conditions, as in the human perception experiment.

Sampling resolution Percent correct (SE)

samp2 76.67 (7.93)

samp3 83.33 (5.56)

samp5 77.78 (6.09)

samp7 76.67 (6.43)

10ms frameshift 81.11 (5.98)

Table 4.5: SVM tonal classification accuracy conditioned on sampling resolution,

aggregated across the speaker folds. SE, in parentheses, is derived from between-

fold variance.

Confusion matrices for the 10ms frameshift and 2-sample/syllable conditions

are given in Tables 4.6 and 4.7. There were no classification errors for Tone

55 or 33, for any sampling resolution. The Tone 25 rise was classified with the

highest accuracy after that, around 90%, and was confused with Tone 23, the
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other rise. Tone 22 was classified overall with around 70-80% accuracy and was

highly confusable with Tone 23 across sampling resolution conditions. Tone 21

and Tone 23 were classified with the lowest accuracy overall, around 40-70%,

and were both confused with a mix of tones. Tone 21 was mostly confused with

Tone 23 with a 20% increase in confusability with Tone 22 between the 10 ms

frameshift and 2-sample conditions, and Tone 23 was mostly confused with Tone

22 and Tone 21.

These results are similar in some ways to the perception experiment results.

For both human listeners and machine, Tones 55, 25, and 33 were classified with

high accuracy, and Tone 23 with low accuracy. However, for humans, Tone 21

was classified with high accuracy and Tone 22 with low accuracy, but for the

SVMs, Tone 21 accuracy was relatively low, and Tone 22 accuracy relatively

high. In addition, unlike for human listeners, there was no pattern of sharp drops

in classification accuracy between the 3- and 2-sample conditions except for Tone

21, which had a 13% increase in Tone 22 confusability.

Actual Response

55 25 33 21 23 22

55 100.00 0.00 0.00 0.00 0.00 0.00

25 0.00 86.67 0.00 0.00 13.33 0.00

33 0.00 0.00 100.00 0.00 0.00 0.00

21 6.67 0.00 6.67 66.67 13.33 6.67

23 0.00 0.00 6.67 20.00 53.33 20.00

22 0.00 0.00 0.00 0.00 20.00 80.00

Table 4.6: Confusion matrix from SVM classification for the 10 ms frame shift

condition.
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Actual Response

55 25 33 21 23 22

55 100.00 0.00 0.00 0.00 0.00 0.00

25 0.00 93.33 0.00 0.00 6.67 0.00

33 0.00 0.00 100.00 0.00 0.00 0.00

21 0.00 6.67 6.67 40.00 20.00 26.27

23 0.00 6.67 6.67 13.33 53.33 20.00

22 0.00 0.00 0.00 0.00 26.67 73.33

Table 4.7: Confusion matrix from SVM classification for the 2-sample condition.

4.4.3 Discussion

Our computational modeling showed that given only a minimal acoustic parame-

terization of the speech signal, with one real-valued parameter—standardized log-

transformed mean f0—per sample, the stimuli in the perception experiment could

be classified as accurately under every degraded sampling resolution condition,

with a lower bound of 6 real values for parameterization (2 samples/syllable), as

with 69 real values. The tonal identification accuracy from computational mod-

eling, in the high 70s to 80%, was close to that from the supratone Cantonese

automatic tonal recognizer (Qian et al., 2007), which uses Gaussian mixture

models based tritone models over a parameter set of 3 averaged f0 values per syl-

lable and had an accuracy of 75.59% on a much larger and variable corpus than

ours. Thus, acoustic information in the signal alone is sufficient for explaining

how accurate tonal classification with less than a quarter of the speech signal

duration available could be maintained. This is not to say that listeners were

computing standardized log-transformed mean f0s over each sample and making
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tonal decisions based on SVM algorithmic procedures! We merely suggest that

computational modeling shows that the information needed for accurate tonal

classification in the face of sparsely sampled data is present in the acoustic sig-

nal. We discuss the interplay of assumptions in computational modeling and

what humans actually do further in §4.5.

In fact, it is clear that our results from computational modeling differ signif-

icantly from the human perception results in a few ways. First, human perfor-

mance dropped as sampling resolution did, but machine performance did not. We

conjecture that part of the reason for this difference is that humans were coming

up against the limit of perceptual continuity as the noise interval durations in-

creased, as discussed in §4.3.3, while the effect of perceptual continuity was not

computationally modeled. Additionally, we did not model tonal mergers in the

machine classification, and some human listeners may have had tonal mergers.

The z-score preprocessing of the data, as a speaker normalization procedure, may

have also been the reason that the level tones Tone 55 and Tone 33 were iden-

tified with perfect accuracy and Tone 22 with high accuracy for all resolution

conditions by machine, but not by humans.

Second, identification accuracy for Tone 21 was relatively high for humans,

but low for machine, and accuracy for Tone 22 was relatively low for humans, but

high for machine. These discrepancies are informative for insight into the human

perception experiment. Most of the unvoiced frames in the RAPT f0 extrac-

tion came in Tone 21 stimuli, since Tone 21 realization frequently had nonmodal

phonation, low amplitude, and even intervals of silence. The parameterization

for computational modeling did not capture this, and while there are more so-

phisticated rules for estimating the pitch percept in the presence of nonmodal

phonation for the human listeners than the simple linear interpolation used over
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voiceless frames that we used, cf. the aberrant pitch contours for Tone 21 in Figure

4.2, the poor accuracy for Tone 21 identification by machine nevertheless suggests

that a parameterization of the speech signal that references voice quality, beyond

f0, is needed for both higher classification accuracy of T4 by machine, and for

modeling what humans are doing. In support of this, as discussed in §4.3.3, Yu

and Lam (2011) showed that Cantonese listeners use voice quality parameters in

tonal perception, and that creaky voice cues improve their Tone 21 identification

accuracy.

The discrepancy between human and machine for Tone 22 accuracy may have

been due to lexical biases that we abstracted away from in the computational

modeling. The estimated low relative frequency of the Tone 22 character (cf.

§4.3.3) may have biased listeners against Tone 22 responses, as the computational

modeling suggests that the acoustic information available could have resulted in

better performance relative to T5 identification.

4.5 General discussion

In summary, we have shown that fine-grained temporal resolution in the speech

signal is not necessary for accurate tonal perception within the contexts of our

human tonal perception experiment and computational modeling. The task of

the listeners in the perception experiment was to identify the middle tone in

nonce Cantonese tritones from five speakers, where the first and third members

of the tritones were fixed as mid level Tone 3(3), and where the sampling resolu-

tion in the speech signal was systematically degraded by interrupting the signal

with uniformly distributed noise intervals. In computational modeling of tonal

classification of the experimental stimuli using linear support vector machines,

the speech signal was parameterized as z-score log-transformed f0 values stan-
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dardized over speaker-specific means and standard deviations, extracted at a 10

ms frame shift, and averaged over the same frames that were available to the

listeners.

Humans as well as linear support vector machines classified the tones at well

above chance levels even at a temporal resolution of 2 samples/syllable, a condi-

tion where less than a quarter of the duration of the speech signal was accessible.

For human listeners, identification accuracy at 5 samples/syllable was not sta-

tistically distinct from accuracy with the intact speech signal, and accuracy at 3

samples/syllable was also not statistically distinct from the intact condition for

all but 2 of the 6 tones. The noise interval durations in the 2-sample condition

may have been close to the upper limits of perceptual continuity, which may

have been part of the reason that five tones were identified with significantly less

accuracy and one tone was identified with a trend for less accuracy in that con-

dition than in the intact condition. For machine classification, accuracy was not

statistically different between using a parameter set of 69 standardized f0-based

values and the parameter sets for any degraded conditions down to the 2-sample

condition analogue, with a parameter set of 6 f0-based values over the tritone,

showing that even with sparse temporal resolution, acoustic information alone is

sufficient for accurate tone classification.

As discussed in §4.1, this negative result that fine-grained attention is not

necessary for good separability of Cantonese tones in human listeners and by

machine classification is consistent with rigidity in the structure of the class of

maps from the speech signal to lexical tone categories in human languages—it is

consistent with finite VC dimension in tonal maps in human languages. Addition-

ally, our perceptual results also bear on tonal recognition, especially since we set

up the manipulation of sampling resolution for the listeners in a way consistent
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with acoustic feature extraction in tonal recognition, with a uniform sampling

rate over multiple syllables (tritones) to provide contextual information, with

syllables duration fixed to a constant to simulate time normalization in feature

extraction. Our perceptual results showing the sufficiency of coarse-grained sam-

pling resolution for human listeners complement Tian et al. (2004)’s automatic

tonal recognition study of Mandarin that found that sparse temporal resolution,

with 4 samples/tone, can outperform fine-grained sampling with 1 sample/10 ms

and help motivate the coarse-grained frameshift in automatic tonal recognizers

that has been used in many recent studies such as Peng and Wang (2005); Qian

et al. (2007); Wang and Levow (2008); Zhou et al. (2008).

Since automatic tonal recognition and more generally, automatic speech recog-

nition has not reached levels of human performance, one apparent remaining puz-

zle arising from our proof-of-concept machine classification experiment is the gap

between human and machine performance: while the best human performance

was 67.71% accurate, with no noise in the signal, SVM performance was around

80%. We already discussed in §4.3.3 that some of this gap could be attributable

to tonal mergers in listeners. Moreover, it is important to remember that the

human and machine tasks were incomparable, and so the raw accuracy values

obtained in the two tasks are also incomparable. The machines were trained to

just stimuli from the experiment—tritones, with the first and third tones fixed to

mid-level tones—and then tested on stimuli from the experiment. The humans

had a lifetime of training on a huge variety of contexts and then were tested

on stimuli in a simulated “pure speech” context, with very limited top-down in-

formation available—a test context that was surely never encountered in their

lifetime training.

With that comparison of training in mind, one can interpret the high perfor-
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mance of the machines as due in part to overfitting: should the trained classifiers

be asked to identify tones in contexts other than that of the stimuli in this exper-

iment, they would likely do poorly. In addition, the machines received the stimuli

in a representation that may have been unlike how humans perceive the stimuli.

The preprocessing of the stimuli pitch contours as log-transformed f0, standard-

ized by speaker pitch range, gave the machines different information than was

available to the speakers, which appears to have been particularly informative for

level tone identification.

While neither the perceptual experiment nor the computational modeling in

this chapter tells us what restrictive structure might be present in the class of

tonal maps in human languages, our results highlight a puzzle: this study estab-

lishes that fine-grained temporal resolution in the speech signal is not necessary

for distinguishing tonal concepts in natural languages, yet humans are sensitive

to fine-grained temporal resolution. Krishnan et al. (2005) even show that the

frequency following response in the brainstem, thought to encode pitch in hu-

mans, shows higher-fidelity pitch tracking in Mandarin speakers than English

speakers and suggest that native speakers of tone languages may be tuned by

their language input to be more sensitive to fine-grained temporal resolution in

pitch encoding. With such fine-grained resolution, the potential number of dis-

tinctions that could be drawn as tonal concepts, over the time series of even just

a single parameter, could explode.

Yet, tonal maps of the world’s languages seem to have a tendency to be simple

in that the tonal concepts of a particular language can be well-separated in purely

acoustic spaces of low dimensions, as evidenced by the results of this paper and
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other studies parameterizing the speech signal as an f0-based time series sampled

with sparse temporal resolution, cf. §4.1, or other low-dimensional representations

of f0, e.g. piecewise-linear approximations (refs. in Hirst and Espesser (1993, 75),

Li and Lee 2007) quadratic splines (Hirst and Espesser, 1993), or the orthogonal

Legendre polynomial basis set (Kochanski et al., 2005). At this point in time, it

is not clear whether the simplicity of tonal systems in natural languages is due to:

(i) a natural class of learnable tonal systems that may, as a class, have finite VC

dimension (Vapnik, 1995) or (ii) a strong probabilistic tendency for tonal systems

in natural language to be simple, despite being drawn from a class of possible

tonal systems in natural languages that may be unbounded in complexity, for

instance, in having infinite VC dimension.

Discovering what restrictive structure might be present in tonal maps in hu-

man languages will take both behavioral and neurological experiments with hu-

mans and computational modeling to tease apart what humans are doing in those

experiments. The fit between human experiments and computational modeling

in this study is crude at best, and it is our hope that future work can simultane-

ously ground modeling assumptions more carefully based on what we learn about

human cognition, and sharpen the questions we ask and conclusions we can draw

from human experiments with formal computational perspectives.
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CHAPTER 5

Cross-linguistic data for studying tonal

representations from Bole, Mandarin,

Cantonese, and Hmong

5.1 Introduction

In this chapter, we describe exploratory data analysis comparing the separability

of tonal concepts in different parameter spaces in single-speaker spaces, using

cross-linguistic data from our sample of tone languages: Bole, Mandarin, Can-

tonese, and Hmong. Unlike in the preceding three chapters, our analyses are

entirely based on computational modeling. We define separability using both

classification accuracy calculated from machine classification and geometric vi-

sualization of the overlap of the convex hulls of tonal concepts, as introduced in

the discussion of the support vector machine algorithm in Chapters 2 and 4.

To determine how tones are defined for humans—how they are parameterized—

we assume here that a good candidate for a relevant parameter space for humans

is one in which separability is maximized, and in particular, one in which tones

are (close to) separable, but with a penalty for complexity—here, defined as the

number of parameters in the parameter space. For instance, if separability is

approximately equivalent in two spaces, but one uses more parameters than the

other, then we assume the space with fewer dimensions is the one relevant for
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tonal representation for humans.

The drawback of lacking human behavioral data here is that the strategy

of maximizing separability of tonal concepts is not guaranteed to produce tonal

spaces that are close to human tonal spaces. If a principle of maximizing sep-

arability, or more generally, a principle of dispersion, were the only principle in

play in human tonal spaces, then we would not expect any tonal mergers, for

instance, and yet they occur, e.g. in present-day Cantonese (Mok and Wong,

2010a,b). However, this is a reasonable strategy in the face of missing relevant

human perceptual data, and the standard one.

The availability of computational modeling allows us to ask some questions

that are very difficult, if not impossible, to ask with human behavioral exper-

iments. We sought to generalize both our own results about voice quality and

temporal resolution in Cantonese tones and Gauthier et al. (2007)’s claim that

f0 velocity alone outperforms f0 values in classifying Mandarin tones (in multi-

speaker spaces, not single speaker spaces) to other languages. For a single-speaker

tonal space in Bole, Cantonese, Hmong, and Mandarin, we asked:

1. Does phonation interact with f0 parameters in a systematic way? Can we

really abstract away from these interactions, if they exist?

2. How is tonal separability affected by the temporal resolution of f0-based

parameters—log-transformed f0 values (static) and f0 change (dynamic)?

3. In a d-dimensional parameter space for fixed d, do f0 change parameters

yield higher tonal separability than static f0 parameters? How about static

and dynamic parameters in combination?

Teasing apart the effect of static vs. dynamic cues is very difficult to approach

with human behavioral studies, since f0 values and the change between them
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are linearly dependent and thus by definition difficult to segregate as cues in a

controlled experiment. But this is quite feasible using computational modeling.

While Gauthier et al. (2007) used self-organized maps, a kind of neural network

approach, to model the unsupervised learning of tone categories and support

his claim about f0 velocity in Mandarin, here we use linear classifiers to model

supervised learning, as discussed in Chapter 1, since our focus is on characterizing

tonal representations. Like Gauthier et al. (2007), though, our stimuli sets are

drawn from syllables extracted from connected speech elicited to vary over all licit

bitone combinations, and the parameters are drawn only from these syllables and

not also neighboring ones.

While we already know that there are Hmong, Mandarin and Cantonese tones

that are frequently creaky, as discussed in Chapter 1 and 3, we were interested

in following up on our claim from 3 that it is difficult to treat f0 as a separate

non-interacting component from other aspects of voice quality: here in this ex-

ploratory analysis, we wanted to abstract away from voice quality to work in f0

value-based spaces, but we suspected that it would be difficult to do so.

Further, drawing on our results in Cantonese from Chapter 4, we hypothe-

sized that temporal resolution would not have a large effect on tonal separability

within a set of parameters: separability using f0 values only or f0 change val-

ues only would not be dramatically increased with higher temporal reslolution.

Because our sample of languages included ones with level tone contrasts (Bole,

Cantonese, Hmong), we hypothesized that given a fixed number of total param-

eters for defining tones in these languages, f0 change parameters would not yield

higher separability than static f0 parameters. It is important to note that level

tones may be realized as contours, as exemplified in the pitch track for a Bole sen-

tence in Figure 5.1, so it is not obvious that f0 change parameters won’t separate
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level tones well.
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Figure 5.1: A sequence of tones in Bole, a tone language with H and L tones.

Sequences of level tones in a level tone language are not necessarily sequences of

step functions. Rather, they can show rises and falls due to tonal coarticulation.

The sentence is àǹın némà méngò, ‘The owners of prosperity came back.’

The rest of this chapter first describes the materials and methods used in

computational modeling (§5.2) and then includes a note about the interaction of

phonation with f0 parameters (§5.3), the results for the effect of temporal resolu-

tion on separability (§5.4), the comparison of static and dynamic f0 parameters

(§5.5); we conclude with a general discussion (§5.7).
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5.2 Materials and methods

5.2.1 Data

For exploratory data analysis, we chose a single male speaker from each language—

Bole, Mandarin, Cantonese, and Hmong—from our production data corpora de-

scribed in Chapter 1. All the speakers had linguistics training and produced tones

more accurately and distinctly than other speakers in the corpora, and also were

among the least creaky. We chose to model single speaker spaces, since it has

been demonstrated that tones in single speaker spaces (speaker-dependent recog-

nition) are much more separable than tones in multiple speaker spaces (speaker-

independent recognition): Wong and Diehl (2003) found that in identifying the

three level tones of Cantonese in isolation from 7 speakers, listeners were 80.3%

accurate when stimuli were blocked by speaker but only 48.6% accurate when

stimuli from different speakers were mixed together. With single speaker, rela-

tively dispersed tonal spaces to model, we felt that the assumption of separability

of tonal categories would be more well-founded, and with speakers who had little

creak in their productions, we thought it would be more reasonable to abstract

away from voice quality parameters.

Exemplars of each tone were drawn from productions of sentence-medial

bitones over all licit bitone combinations in each language, as described in Chap-

ter 1. The syllable boundaries of each of the bitone members were annotated

using Praat (Boersma and Weenink, 2010). Parameters were extracted from

monosyllables; no contextual information as in Chapter 2 was included, as was

done in Gauthier et al. (2007), to facilitate comparisons with their results.
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5.2.2 Parameter sets

We extracted f0 values with RAPT (Talkin, 1995), under default settings, and

we created different temporal resolution conditions by averaging and log trans-

forming f0 values over 1, 2, 3, 4, 5, 7, 10, and 12 intervals uniformly partitioning

the syllable duration. As in most automatic tonal recognition studies, one effect

of this averaging was to throw away information about missing values, say, due

to nonmodal phonation. The condition with 1 interval uniformly partitioning the

syllable duration, under the averaging performed here, is equivalent to taking the

mean over the syllable. Because this is very smoothed compared to extracting

a single sample over a smaller temporal window than the syllable, we also com-

pare extracting a single sample from the 5 interval condition to extracting the

syllable mean in §5.6. We were primarily interested in comparing 1, 2, 3, 5, and

10 samples, but also calculated f0 means for 4, 7, and 12 samples for f0 change

calculations.

We calculated f0 change values from the f0 values as in Gauthier et al. (2007),

by taking half the difference between averaged f0 values one interval apart as a

kind of smoothing procedure, e.g. for calculating f0 change values for a temporal

resolution of 3 parameters per syllable, we took half the difference for the 1st

and 3rd, 2nd and 4th, and 3rd and 5th mean f0 values extracted over 5 uniform

intervals. By calculating f0 change values for a given temporal resolution from

f0 values for a different temporal resolution, we also kept the f0 and f0 change

parameters linearly independent when they were combined in the same parameter

set. This was necessary for the algorithm used (§5.2.3) to determine a solution

for classification, since it relied on calculating matrix inverses. We calculated f0

change parameters, in Hz, for 1, 2, 3, 5, and 10 parameters over the syllable.

The purpose of using log-transformed f0 values but f0 change values in Hz
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space was to put the two types of parameters on a similar scale; this was irrelevant

for our study (cf. §5.2.3), but crucial in Gauthier et al. (2007) for the same reason

we standardized parameters for SVM classification in Chapters 4 and 2.

5.2.3 Analysis

We used a different classification algorithm than that for support vector machines

for this study because of our interest in dimensionality reduction for the visualiza-

tion of separability in our exploratory data analysis. The classification algorithm

was linear discriminant analysis (LDA) (Duda et al., 2001; Hastie et al., 2009)

implemented using the MASS package in R (Venables and Ripley, 2002), which

produces classifiers similar to the support vector machines used in earlier chap-

ters: both are linear classifiers; the only difference is in the rule for choosing the

optimal separating hyperplane (linear discriminant).

For linear discriminant analysis, a linear combination of the parameters is

chosen that maximizes the separability between classes, where separability max-

imizes the ratio of between-class separability (roughly, the Euclidean distance

between class means), and the within-class separability (roughly, the variance

within a class). For a 2-class problem, only one linear discriminant is chosen; for

multiclass problems with k classes, k−1 discriminants are chosen, each orthogonal

to the others, ranked in order of how much they contribute to separability. Using

the two top-ranked discriminants, one can visualize the 2-D space that produces

the most separated classes, under the separability metric defined in LDA. The

2-D parameter space, a near-approximation of the 10-D one, is still defined over

the original number of parameters, e.g. 10 parameters if 10 f0 values were sam-

pled over the syllable. For Bole, since there were only 2 classes, we plotted the

tones in the LDA-optimized space using density plots, which are like smoothed
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histograms, in 1-D.

As measures of separability, we used both the leave-one-out cross-validated

accuracy of the LDA classifiers and the geometric visualization of 2-D convex hull

plots in LDA-optimal spaces. The leave-one-out strategy for evaluating classifier

performance is similar to the strategy we used in evaluating SVMs, where we

trained on all but one speaker, and then tested the classifier on the held out

speaker. Here, we hold out exemplars rather than speakers. The convex hull

plots show the convex hull of each tone category in the LDA-optimal spaces: the

more overlap there is between convex hulls, the less separated the tone categories

are in a space.

5.3 Abstracting away from voice quality cross-linguistically

For this exploratory study, we considered only f0-based parameter spaces. We

also selected speakers with minimal creak in their productions. In this section,

we show f0 contours from 12 samples over the syllable from each speaker to to

demonstrate that nevertheless, there are still hints of creak “perturbing” the f0

contours.

In Bole, a language with a H and L level tone contrast, the f0 contours in

Figure 5.2 show that the L tone was generally realized without creak that affected

the f0 contour with a few exceptions.

In Mandarin (Table 5.1), a language with T3 known to be frequently creaky,

the pitch halving in f0 contours in Figure 5.3 show that indeed, a good propor-

tion of the T3 contours are creaky. Something to note here, too, is that while

in isolation, T3 contours are creaky in the middle of the syllable, here, in the

sentence-medial context, the creaky region can persist to the end of the syllable.
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Figure 5.2: f0 contours from Bole speaker m1, with 12 samples over the syllable

extracted from sentence-medial position. There is little sign of the effect of voice

quality on pitch tracking, but there appears to be some edge effects causing

discontinuities in the f0 tracks.
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Tone 5-level system Tone letters Contour shape

1 55
Ă
£ High level

2 35 Ę£ Rise

3 21(4) ŁŘ£ Low or Fall-Rise (Dipping)

4 51 Ď£ Fall

5 Toneless Neutral/light

Table 5.1: Labels for Mandarin tonal categories (Chao, 1968)
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Figure 5.3: f0 contours from Mandarin speaker m1, with 12 samples over the

syllable extracted from sentence-medial position. Many T3 utterances show the

typical signature of pitch halving in creaky regions.
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In Cantonese (Table 5.2), Figure 5.4 shows that T4 was mostly produced

without creak interacting with the f0 contour, but there were at least a few

exceptions to this.

Tone 5-level system Tone letters Contour shape

1 55
Ă
£ High level

2 25/35 Ğ£/Ę£ High rising

3 33 Ă£ Mid level

4 21 Ą£ Mid-low falling

5 23/13 Ě£/Ę£ Mid-low rising

6 22 Ă£ Mid-low level

7 5
Ă
£ High stopped

8 3 Ă£ Mid stopped

9 2 Ă£ Mid-low stopped

Table 5.2: Labels for Cantonese tonal categories
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Figure 5.4: f0 contours from Cantonese speaker m1. Some T4 utterances show

creak.

196



In Hmong (Table 5.3), Figure 5.5 shows that the m-tone was mostly produced

without creak that affected the smoothness of the f0 contour, almost without

exception. Also, the breathy g-tone does not seem to show f0 irregularities.

Tone Contour shape (Esposito et al., 2009) Ratliff (1992) Voice quality

b-tone High-rising 55
Ă
£ Modal

null-tone Mid 33 Ă£ Modal

s-tone Low 22 Ă£ Modal

j-tone High-falling 52 Č£ Modal

v-tone Mid-rising 24 Ę£ Modal

m-tone Low-falling 21 Ą£ Creaky

g-tone Mid-falling (males), High-falling (females) 42 Ć£ Breathy

Table 5.3: Labels for Hmong tonal categories
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Figure 5.5: f0 contours from Hmong speaker m6, with 12 samples over the syllable

extracted from sentence-medial position. The creaky m-tone shows some pitch

halving, and the breathy g-tone shows a distinct f0 contour from the j-tone for

this male speaker.
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Overall, although we did our best to abstract away from voice quality and work

within f0 value-based parameter spaces, it was not possible to do this entirely

cleanly except perhaps in Bole, even for speakers hand-picked to have minimal

creak in their productions. An option to force a clean abstraction for method-

ological purposes would be to remove f0 contours exhibiting discontinuities under

some criteria from the data set, but we did not pursue that here. In the convex

hull plots in the following sections, the ubiquitous presence of creak interacting

with f0 is still visible in the creaky tones in each language: T3 in Mandarin, T4

in Cantonese, and the m-tone in Hmong. The convex hulls for these tones tend

to be larger in area than for the other tones, due to what one might call outliers,

but more accurately, data that shows interaction of voice quality with idealized

f0-based parameters. Since the creaky voice cues are informative to the listener,

as we showed in Chapter 3, the effect of creak on dispersing the creaky tones

further from other tones within a tonal inventory in the plots is not a spurious

effect of outliers.

5.4 Temporal resolution within a parameter set

Overall, we found that LDA classifiers with f0 values and/or f0 change values

performed remarkably well in monosyllables extracted from connected speech in

single-speaker spaces for Bole, Mandarin, Cantonese, and Hmong, with classifi-

cation accuracies generally around 90% for parameter sets of cardinality greater

than two. This follows the pattern in Chapters 4 and 2, in which machine classifi-

cation accuracy was also high; in those chapters, we used by-speaker z-score stan-

dardization in preprocessing for speaker-independent recognition over 5 speakers,

but here in single speaker spaces, the only preprocessing was smoothing f0 values

(averaging over time slices) and log transforming them.
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The high accuracy for LDA classification with only a few real values is im-

pressive, but not wholly surprising, because the classification task is over single

speaker spaces, with speakers with quite dispersed tones. In Ma et al. (2005),

Cantonese listeners were tested on monosyllables extracted from connected speech

(in a frame sentence between a T4 and a T6) from two speakers, the stimuli were

blocked by speaker (serial single speaker recognition). This is a situation similar

to the classification task here, except that there was more contextual variability

in our stimuli, and listeners were quite accurate in tonal identification in that

experiment. Listener accuracies were quite high except for the T2 rise which was

perceived mostly as T5. They were, for T1-T6 respectively,86.1%, 38.9%, 63.9%,

97.2%, 99.1%, 86.1% (From Table 2 in Ma et al. (2005)).

Turning to results for the effect of temporal resolution, we found, like in the

computational modeling in Chapter 4, that the separability of tonal concepts was

minimally affected by temporal resolution within parameter sets of (log trans-

formed) f0 values alone, or f0 change values alone. Tables 5.4, 5.5, 5.6, and 5.7

give the leave-one-out classification accuracies for each language, for each param-

eter set, for each temporal resolution tested. They show that for every language,

there was a jump in accuracy from 1 to 2 samples and a smaller jump from 2 to 3

samples, but otherwise, classification accuracies are very similar across temporal

resolutions, within a parameter set. We remind the reader that the blank cells in

the tables are because we tested more temporal resolutions for static f0 parame-

ter sets than the parameter sets involving f0 change values, since the f0 change

values at particular temporal resolutions needed to be calculated from static f0

parameter sets at other temporal resolutions.

200



Parameters/samples 1 2 3 4 5 7 10 12

log f0 68.50 90.50 89.50 89.50 91.50 89.50 88.00 88.88

f0 change 82.50 78.00 80.50 75.50 80.25

Both 91.00 88.50 89.50

Table 5.4: Comparison of LDA leave-one-out classification accuracy across pa-

rameters and sampling resolutions for Bole speaker m1

Parameters/samples 1 2 3 4 5 7 10 12

log f0 54.50 74.84 89.39 89.18 90.21 89.45 90.37 90.69

f0 change 58.82 81.17 83.82 82.96 82.36

Both 74.19 89.39 87.66

Table 5.5: Comparison of LDA leave-one-out classification accuracy across pa-

rameters and sampling resolutions for Mandarin speaker m1

Parameters/samples 1 2 3 4 5 7 10 12

log f0 61.06 80.58 93.58 94.22 93.93 94.64 94.02 94.95

f0 change 45.92 76.29 77.46 79.70 79.18

Both 81.23 92.65 93.70

Table 5.6: Comparison of LDA leave-one-out classification accuracy across pa-

rameters and sampling resolutions for Cantonese speaker m1
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Parameters/samples 1 2 3 4 5 7 10 12

log f0 57.04 80.46 94.08 92.61 93.00 93.55 92.83 92.91

f0 change 47.78 75.40 75.87 75.71 73.30

Both 81.92 92.83 92.92

Table 5.7: Comparison of LDA leave-one-out classification accuracy across pa-

rameters and sampling resolutions for Hmong speaker m6
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We show some highlights from these results with density plots and convex

hull plots. Figure 5.6 displays the effect of increasing temporal resolution for f0

values in Bole, a language with only a contrast between H and L tones. While

there is an increase in separability from 1 (Fig. 5.6a) to 2 samples (Fig. 5.6b),1.

separability is approximately constant for higher resolutions, with 3 (Fig. 5.6c)

or 10 samples (Fig. 5.6d). This was the general trend in all languages, for both

f0 values and f0 change values.

Figure 5.7 displays the different effects between f0 values and f0 change values

of increasing temporal resolution from 2 to 3 samples. For 2 f0 values (Figs. 5.7a,

5.7b), the convex hulls of T1, T2, and T3 show significant overlap, but the overlap

is much reduced with 3 samples. However, there is litte difference in separability

between 2 and 3 values for f0 change (Figs. 5.7c, 5.7d).

As discussed in Chapter 4, there have been multiple suggestions in the liter-

ature that a minimum of 3 f0 values is necessary to capture the turning point

difference in contours between the T2 rise and T3 fall-rise in isolation. For mono-

syllables extracted from connected speech, the large increase in separability from

2 to 3 samples in a f0-value parameter space is consistent with the idea of land-

mark/target f0 values for delineating the contour shape. Thus, it is noteworthy

that there is no marked increase in separability from 2 to 3 samples in a space

defined over f0 change rather than f0 values: classification accuracy was 81.17%

with 2 samples and 83.82% with three. Since the f0 change values are calcu-

lated between f0 values, there is more information in 2 f0 change values (as linear

combinations of 2 pairs of 2 f0 values each) than 2 f0 values for describing con-

tour shape. If 3 f0 values are sufficient for maximizing separability, as evidenced

in Table 5.5 where classification accuracy asymptotes to a ceiling for 3 samples

1But see §5.6 for a discussion of taking a sample over a narrower window of time, rather
than taking the mean f0
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or more, then it is logical that 2 f0 change values, e.g. a negative value (fall)

followed by a positive one (rise) are sufficient as well, with little discriminatory

power drawn from higher temporal resolution. Indeed, classification accuracy

asymptotes in Table 5.5 for f0 change for 2 f0 samples or higher.
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Linear discriminant 1, 1 f0 samples

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

−3 −2 −1 0 1 2

tone

H

L

(a) 1 f0 sample

Linear discriminant 1, 2 f0 samples
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Linear discriminant 1, 3 f0 samples
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(c) 3 f0 samples

Linear discriminant 1, 10 f0 samples

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4

tone

H

L
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Figure 5.6: Density plots in LDA-optimized space for Bole speaker m1, for 1, 2,

and 3 log-transformed f0 values. There is much less overlap between the H and L

tone categories from 1 (a) to 2 samples (b), but little difference between overlap

for 2 to 3 (c) to 10 samples (d).
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(a) 2 f0 samples (b) 3 f0 samples

(c) 2 f0 change samples (d) 3 f0 change samples

Figure 5.7: Convex hull plots in LDA-optimized 2-D spaces for Mandarin speaker

m1, for 2 and 3 log-transformed f0 values and f0 change values. Top: there is

much less overlap between T1, T2, and T3 for 3 samples (b) than 2 sample of

log(f0) (a). Bottom: but there is little difference in separability between 2 (c)

and 3 samples for f0 change (d).
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5.5 The parameterization of f0: f0 and f0 change

We could not generalize Gauthier et al. (2007)’s finding that Mandarin tones

across multiple speakers are better categorized in some sense with dynamic f0/velocity

parameters than static f0 parameters. Dynamic f0 parameter spaces did not pro-

duce consistently greater separability in single speaker spaces in Mandarin or in

the other languages, which all had level tone contrasts. For a given temporal

resolution, classification accuracy was higher in a parameter space defined over

static f0 values than in one defined over dynamic f0 values for every language

in every temporal resolution compared, with two exceptions, for the 1 sample

comparison between f0 and f0 change in Bole, and the 2 sample comparison in

Mandarin. The overwhelming pattern, though, was that static f0 spaces were

better able to separate out tones, as illustrated in Figure 5.8. Even with 10 sam-

ples over the syllable, f0 change parameters could not separate the Hmong tones

well (Figure 5.8b), but a parameter space defined by 10 f0 samples resulted in

minimal overlap between convex hulls (Figure 5.8a).
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The exception is a surprise. Table 5.4 shows that Bole classification accuracy

was 68.50% with just mean log f0, but it was 82.50% with mean slope/f0 change.

Figure 5.9b shows that although both H and L tones had little overall change in f0

over the syllable, the majority of L tones had a negative mean slope—there is even

a bimodal distribution, which picks out a subset of L tones with negative f0 slope,

and a subset of L tones with approximately constant f0. This is due to allophonic

variation: in Bole, L tones following H tones fall, but L tones following L tones

are more flat. Dynamic f0 parameters were better able to segregate out L tones

following H tones than following L tones. Figure 5.10 shows f0 contours for H and

L tones in either the first tone of the bitone (top) or the second (bottom). For

the L tone in both positions, there is a clear bifurcation between flatter contours

and ones falling from previous H tones. The corresponding context for H tones,

preceded by Ls, doesn’t show as strong a bifurcation, and this is reflected in the

lack of a bimodal distribution for H tones in the dynamic parameter space.

The superiority of a single dynamic parameter over a single static one in

a single speaker space is quite surprising, given that Bole is a tone language

with two level tones, and that level tones are often defined as single f0 targets

(Goldsmith, 1976). Gauthier et al. (2007) attributed the better performance of

dynamic parameters in Mandarin multispeaker spaces to the effect of speaker

normalization that occurs with f0 change parametrization which is insensitive to

global shifts in pitch range that occur across speakers. Here, we see that at the

same temporal resolution, f0 change can better able to separate a single level tone

contrast in a single speaker space.

It is worth noting though, that while our tonal production corpora uniformly

sampled over all licit bitone combinations—with half of the combinations, LH

and HL, creating environments for rises and falls between the two tones in the
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bitone and from the syllables preceding and following the bitone—different distri-

butions of bitone combinations in input to the learner and listener could change

separability characteristics; in Bayesian terms, while we assumed uniform priors

over tone unigrams and bigrams, the situation for the learner/listener might be

quite different.
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Figure 5.9: Density plots in LDA-optimized space for Bole speaker m1, for mean

f0 (Hz), (a), or mean f0 slope (Hz), (b). The overlap in the H and L tone classes

is smaller in the mean f0 slope parameter space. The bimodal distribution in

that space is due to allophonic variation.

The greater separability of H and L level tones in dynamic f0 spaces in Bole,

a 2-tone system, relative to the separability of level tones in the 6- and 7-tone

systems of Cantonese and Hmong, e.g. Fig. 5.8, suggests that level tones in large

tonal inventories with contour tones might be realized with more level contours

than in small tonal inventories with only level tones. We note, though, that in

recording the languages with larger tonal inventories (Cantonese, Hmong), we
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Figure 5.10: Allophonic variation in Bole speaker m1’s productions, showing f0

contours for H and L tones in the first and second members of the elicited bitones.

The time scale shows percentage of the segment, and there are two segments, an

onset consonant and a nucleus vowel, separated by a solid line. The striking

bifurcation in the realization of the L tones is due to the fall from a preceding H

vs. a flatter contour following a L. The larger fall in some of the Ls realized as

the second member of the bitone is due to a sentence frame in which the L was

sentence-final.

fixed the syllables preceding and following the target bitones to be mid-level

tones, unlike in Bole, where they varied over both H and L tones, promoting

more dynamic f0 contours. Still, in the Cantonese temporal domain experiment
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(Chapter 2), confusability in the isolation context came from two separate sources:

level tones were confused with level tones and contour tones with contour tones.

To separate level tones and contour tones in languages like Cantonese and Hmong,

then, a natural idea is to define spaces over both static and dynamic parameters.

In a parameter space of fixed size, we found that equally dividing the param-

eter set between static and dynamic f0 parameters yielded tonal separability that

was comparable to the highest performing parameter set between all static or all

dynamic f0 parameters, with the exception of 2-parameter spaces in Mandarin, in

which classification accuracy was around 74-75% for one static and one dynamic

parameter, as well as for two static parameters, slightly lower than the 81.17% ac-

curacy for two dynamic parameters. Figures 5.7a and 5.7c show that separability

between the two Mandarin parameter spaces with 2 static or dynamic parame-

ters is similar. The main contribution to increased separability with 2 f0 change

values relative to 2 f0 values is that the T2 rise is better separated from the T3

low/fall-rise and the high level tone T1; it makes sense that dynamic information

is more informative for discriminating these tones with similar f0 levels.

The nearly exceptionless majority pattern, though, is exhibited in Figure 5.11

for Cantonese 4-parameter spaces. The plot for a f0 value space and the plot for

one with f0 values and f0 change values are very similar, and classification accu-

racy was 94.22% and 92.65% for the all f0 and mixed parameter set, respectively.

The most overlapped tone classes were the rises T2/T5 and the mid and mid-

low level tones T3/T6; both pairs are known to be merged in some Cantonese

speakers/listeners.
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5.6 Tonal separability with samples over narrow windows

of time near the syllable onset and offset

Throughout this chapter, we extracted sample parameters as averages, e.g. when

we extracted 5 f0 samples, we extracted mean f0 samples from each of five evenly

divided windows over the syllable. This is a common practice in automatic tonal

recognition, e.g. Qian et al. (2007). Especially in cases of low sampling resolu-

tion, though, the smoothing effect of this averaging might result in lower tonal

separability than if samples taken over finer time windows were taken. In ex-

ploratory work for future directions, we checked tonal separability with 1 sample

taken near the syllable onset and near the syllable offset for both f0 and f0 change

values. For both the f0 and f0 change values, we sampled the 2nd and 4th values

extracted for the 5-sample condition for each language, as shown below in Tables

5.8, 5.9,5.10, and 5.11.

Sampling/Parameter log f0 f0 change

Average 68.50 82.50

2nd/5 samples (onset) 57.00 84.50

4th/5 samples (offset) 79.00 71.00

Table 5.8: Comparison of LDA leave-one-out classification accuracy across pa-

rameters for 1-sample extraction from different temporal windows for Bole

speaker m1: the average value over the syllable and the 2nd and 4th log f0

or f0 change value out of 5 samples over the syllable.

In all but one case, LDA leave-one-out classification accuracy was higher with

at least one of the samples averaged over 1/5 of the syllable duration than with a

sample averaged over the entirety of the syllable duration. In all but one case (for
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Sampling/Parameter log f0 f0 change

Average 54.50 58.82

2nd/5 samples (onset) 44.26 42.22

4th/5 samples (offset) 65.80 77.95

Table 5.9: Comparison of LDA leave-one-out classification accuracy across pa-

rameters for 1-sample extraction from different temporal windows for Mandarin

speaker m1: the average value over the syllable and the 2nd and 4th log f0 or f0

change value out of 5 samples over the syllable.

Sampling/Parameter log f0 f0 change

Average 61.06 45.92

2nd/5 samples (onset) 54.98 42.75

4th/5 samples (offset) 66.46 49.17

Table 5.10: Comparison of LDA leave-one-out classification accuracy across pa-

rameters for 1-sample extraction from different temporal windows for Cantonese

speaker m1: the average value over the syllable and the 2nd and 4th log f0 or f0

change value out of 5 samples over the syllable.

f0 change in Bole), the sample taken at the offset (the 4th of 5 samples over the

syllable) yielded higher LDA accuracy than the sample taken at the onset (the

2nd of 5 samples over the syllable). The difference in accuracy was sometimes

large: in Mandarin, classification accuracy was 20 to 30% higher with the offset

than the onset sample. The increased tonal separability with acoustic information

near the offset of the syllable is consistent with Khouw and Ciocca (2007)’s result

showing that Cantonese tones in isolation were maximally separable near the

syllable offset and with studies of tonal coarticulation showing that carryover
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Sampling/Parameter log f0 f0 change

Average 57.04 47.78

2nd/5 samples (onset) 48.33 46.14

4th/5 samples (offset) 70.22 53.11

Table 5.11: Comparison of LDA leave-one-out classification accuracy across pa-

rameters for 1-sample extraction from different temporal windows for Hmong

speaker m6: the average value over the syllable and the 2nd and 4th log f0 or f0

change value out of 5 samples over the syllable.

coarticulation is stronger than anticipatory coarticulation, as discussed in §4.3.3

in Chapter 4 on page 167.

While these exploratory analyses suggest that tonal separability in a space

defined by a single real value is higher if the real value is extracted over a smaller

temporal window over the syllable than the entirety of the syllable, the highest

classification accuracy achieved with a single sample, even extracted over the

smaller temporal windows, was comparable or up to around 10% lower than

accuracies achieved with 2 samples (as means over the first and second halves of

the syllable). Thus, our results showing the insensitivity of tonal separability to

sampling resolution are not contradicted by the analyses described in this section.
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5.7 General discussion

Up to this chapter, we have discussed only results based on work in Cantonese.

We chose to perform all our tonal perception experiments in Cantonese since it

has level tone contrasts, and thus is more representative of the large majority

of the world’s tone languages which have level tone contrasts (Maddieson, 1978)

than Mandarin, the most commonly used language for studying tonal perception.

But as long as one bases ideas about tonal representation on any single language,

those ideas will be biased by that language. As we discussed in Chapter 1, to

study how tones are defined with the larger goal of understanding how tonal

concepts are learned by humans, it is necessary to analyze cross-linguistic data.

By studying f0-based tonal spaces of single speakers in Bole, Cantonese, Man-

darin, and Hmong with computational modeling in this chapter, we were able to

explore how results from our experiments and computational modeling in Can-

tonese and Gauthier et al. (2007)’s modeling work in Mandarin generalized to

other languages.

First, we found that despite attempts to abstract away from voice quality

information in the speech signal and to work within f0-based spaces, we were not

able to cleanly hack f0 parameters away from the larger body of voice quality

parameters. While breathy phonation in the signal in Hmong for the speaker

used here didn’t seem to interact much with the idealized f0 values extracted, the

presence of creak was evident across all languages except Bole. Given Maddieson

(1977, 1978)’s idea that additional dimensions are introduced for tonal inventories

that are larger in size, the evidence here for little use of voice quality parameters

other than f0 values in Bole is of interest (This was true in the other 4 speakers

recorded as well).
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With a tonal inventory of size 2, Bole has the smallest tone inventory that

a tone language can have. In Maddieson (1977, 1978)’s implicational hierarchy,

if a language has contour tones it also has level tones, and if a language has

complex contours (with more than one extrema, such as in a fall-rise, as opposed

to a fall or a rise) it also has simple contours (falls and rises). Might we add,

that if voice quality cues beyond pitch cues are informative in a tone language,

then the language also has contour tones, or the language has at least n tones?

For languages with contrastive phonation like Hmong and Vietnamese (Chap-

ter 3), these seems like a reasonable statement, as Hmong and Vietnamese have

tonal inventories of large size, and multiple contour tones (thought not clearly

“complex” contour tones in Maddieson’s sense). However, what about register

languages, as discussed in Chapter 3? Most have two, such as Burmese/Khmer,

and if more studies show that in these languages, both pitch and other voice

quality cues non-independently determine human tonal perception, then this hy-

pothetical voice quality implicational universal cannot be correct.

We also found that the separability of tones in the sample of languages and

speakers studied here was extremely high for temporal resolutions beyond 2 sam-

ples over the syllable: leave-one-out classification accuracies from the LDA clas-

sifiers were around 90% and the convex hull plots showed near linear separability

in each language in simple f0 value and/or f0 change parameter spaces. Because

we were working with single speaker spaces of individuals we picked for having

distinct tonal contrasts, this result is not too surprising. But is also not unsur-

prising: there was no contextual information available to the classifier, unlike in

the computational modeling of the effect of having f0 information from neighbor-

ing syllables in Chapter 2; yet classification accuracy for syllables extracted from

varying bitone contexts was near-perfect across languages with as few as 3 f0 val-

ues. We think it is too early, without more analysis from other speakers, to make

218



much of the raw classification accuracies here. We don’t think it would be appro-

priate to generalize to tonal perception over single speakers cross-linguistically.

However, our exploratory study is convincing in showing that extremely sparsely

tonal spaces—in the type of parameter (just based on f0 values) and the reso-

lution of parameter (only 3 values)—can be sufficient for representing the tones

from some speakers.

The relative accuracies across temporal resolutions show evidence that our

hypothesis that coarse temporal resolution is sufficient for good separability of

tonal categories (Chapter 4) generalizes to other tone languages than Cantonese.

Accuracy reached a maximum by a temporal resolution of 3 samples over the

syllable and was stable for higher resolutions across languages, and the convex

hull plots show near linear separability as well. Thus, low dimensionality in

the temporal resolution of tonal representations appears to be something quite

general about tones and not language-specific. This is evidence for something

basic, common to humans, that causes this. One obvious constraint on temporal

resolution comes from the generating source, from articulatory constraints on the

speed of f0 change (Ohala and Ewan, 1973; Sundberg, 1979; Xu and Sun, 2002).

Since it is not clear exactly how f0 is controlled in production, though, it is hard

to model what this constraint is explicitly.

The comparison of separability with the static and/or f0 values showed that

for a fixed size of the parameter set, static f0 values generally yielded higher sepa-

rability than f0 change values, with an exception for parameter sets of cardinality

1 in Bole and of cardinality 2 in Mandarin. Thus, it appears that unlike the low

dimensionality in the temporal representation of tones, the existence of a single

invariant type of parameter, such as f0 values or f0 change values, for represent-

ing tones is not something that is common across tone languages. Since f0 and
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f0 change values are linearly dependent anyway, it seems difficult to motivate an

auditory basis for one type of parameter leading to greater tonal separability than

the other. In any case, we found that by combining static and dynamic f0 values,

separability for a parameter space of a given size was nearly exceptionlessly as

high as separability with static or dynamic f0 values alone.

In summary, even without access to directly relevant human perceptual data,

we were able to use computational modeling in a range of tone languages—

Bole, Mandarin, Cantonese, and Hmong—to better understand how tones are

represented in human cognition. We were able to generalize two results from

Cantonese: voice quality interactions with f0 contours were present, and coarse

temporal resolution in simple f0 value parameter sets were sufficient for near

linear separability of tones in every language.
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Quené, Hugo and Huub van den Bergh. 2008. Examples of mixed-effects modeling

with crossed random effects and with binomial data. Journal of Memory and

Language 59(4):413–425.

R Development Core Team. 2010. R: A Language and Environment for Statistical

Computing. http://www.R-project.org ISBN 3-900051-07-0.

Ratliff, Martha. 1992. Meaningful Tone: A Study of Tonal Morphology in Com-

pounds, Form Classes and Expressive Phrases in White Hmong . Center for

Southeast Asian Studies, Northern Illinois University.

Rose, Phil. 1987. Considerations in the normalisation of the fundamental fre-

quency of linguistic tone. Speech Communication 6(4):343–352.

Samuel, Arthur. 1996. Phoneme Restoration. Language and Cognitive Processes

11(6):647.

Shi, Rushen. in press. Contextual Variability and Infants’ Perception of Tonal

Categories. Chinese Journal of Phonetics .

239



Shih, Chilin and Greg P. Kochanski. 2000. Chinese tone modeling with Stem-ML.

In Proceedings of ICSLP . Beijing, China, pages 67–70.

Silverman, Daniel, Barbara Blankenship, Paul Kirk, and Peter Ladefoged. 1995.

Phonetic structures in Jalapa Mazatec. Anthrolopological Linguistics 37:70–88.

Silverman, Kim E. A. and Janet B. Pierrehumbert. 1990. The timing of prenu-

clear high accents in English. In Papers in Laboratory Phonology I: Between

the Grammar and Physics of Speech, edited by John Kingston and Mary E.

Beckman. Cambridge University Press, pages 72–114.

Stevens, Kenneth N. 2002. Toward a model for lexical access based on acoustic

landmarks and distinctive features. The Journal of the Acoustical Society of

America 111(4):1872–1891.

Strange, Winifred, James J. Jenkins, and Thomas L. Johnson. 1983. Dynamic

specification of coarticulated vowels. The Journal of the Acoustical Society of

America 74(3):695–705.

Sundara, Megha, Linda Polka, and Fred Genesee. 2006. Language-experience

facilitates discrimination of /d-/ in monolingual and bilingual acquisition of

English. Cognition 100(2):369–388.

Sundberg, Johan. 1979. Maximum speed of pitch changes in singers and untrained

subjects. Journal of Phonetics 7:71–79.

Surana, Kushan and Janet Slifka. 2006. Acoustic cues for the classification of reg-

ular and irregular phonation. In Proceedings of INTERSPEECH 2006 . pages

693–696.

Surendran, Dinoj. 2007. Analysis and automatic recognition of tones in Mandarin

Chinese. Ph.D. thesis, University of Chicago.

240



Surendran, Dinoj and Gina-Anne Levow. 2008. Can voice quality improve Man-

darin tone recognition? In Acoustics, Speech and Signal Processing, 2008.

ICASSP 2008. IEEE International Conference on. pages 4177–4180.

Talkin, David. 1995. A robust algorithm for pitch tracking (RAPT). In Speech

coding and synthesis , edited by W. B. Kleijn and K. K. Paliwal. Elsevier Science

Inc., pages 495–518.

Taylor, Paul. 2000. Analysis and synthesis of intonation using the Tilt model.

The Journal of the Acoustical Society of America 107:1697–1714.

Tees, Richard C. and Janet F. Werker. 1984. Perceptual flexibility: maintenance

or recovery of the ability to discriminate non-native speech sounds. Canadian

Journal of Psychology 38(4):579–590.

Tian, Ye, Jian-Lai Zhou, Min Chu, and E. Chang. 2004. Tone recognition with

fractionized models and outlined features. In Acoustics, Speech, and Signal

Processing, 2004. Proceedings. (ICASSP ’04). IEEE International Conference

on, volume 1. pages I–105–8 vol.1.

Toscano, Joseph C. and Bob McMurray. 2010. Cue Integration With Categories:

Weighting Acoustic Cues in Speech Using Unsupervised Learning and Distri-

butional Statistics. Cognitive Science 34(3):434–464.

Valiant, Leslie. 1984. A theory of the learnable. Communications of the ACM

27(11):1134–1142.

Vallabha, Gautam K., James L. McClelland, Ferran Pons, Janet F. Werker,

and Shigeaki Amano. 2007. Unsupervised learning of vowel categories from

infant-directed speech. Proceedings of the National Academy of Sciences

104(33):13273–13278.

241



van de Weijer, Joost. 1998. Language input for word discovery. Ph.D. thesis,

Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands.

van de Weijer, Joost. 2002. How much does an infant hear in a day? In Proceed-

ings of the GALA2001 Conference on Language Acquisition. pages 279–282.

Vance, Timothy J. 1976. An experimental investigation of tone and intonation

in Cantonese. Phonetica 33:368–392.

Vance, Timothy J. 1977. Tonal distinctions in Cantonese. Phonetica 34:93–107.

Vapnik, V. N. and A. Ya. Chervonenkis. 1971. On the uniform convergence of

relative frequencies of events to their probabilities. Theory of probability and

its applications 16(2):264–280.

Vapnik, Vladimir N. 1995. The nature of statistical learning . Springer.

Venables, W. N. and B. D. Ripley. 2002. Modern applied statistics with S .

Springer, fourth edition.

Vishnubhotla, Srikanth and Carol Y. Espy-Wilson. 2007. Detection of irregular

phonation in speech. In ICPhS-2007 . pages 2053–2056.

Wahba, Grace. 2002. Soft and hard classification by reproducing kernel Hilbert

space methods. Proceedings of the National Academy of Sciences of the United

States of America 99(26):16524 –16530.

Wang, Miaomiao, Miaomiao Wen, Keikichi Hirose, and Nobuaki Minematsu.

2010. Improved generation of fundamental frequency in HMM-based speech

synthesis using generation process model. In Proceedings of INTERSPEECH

2010 .

242



Wang, Siwei and Gina-Anne Levow. 2008. Mandarin Chinese tone nucleus detec-

tion with landmarks. In Proceedings of Interspeech 2008 . pages 1101–1104.

Wang, William S-Y. 1967. Phonological Features of Tone. International Journal

of American Linguistics 33(2):93–105.

Warren, Richard M. 1970. Perceptual Restoration of Missing Speech Sounds.

Science 167(3917):392–393.

Werker, Janet F. 1994. Cross-language speech perception: development change

does not involve loss. In The development of speech perception, edited by

Judith C. Goodman and Howard C. Nusbaum. MIT Press, pages 93–120.

Werker, Janet F., Rushen Shi, Renee Desjardins, Judith E. Pegg, and Linda

Polka. 1998. Three methods for testing infant speech perception. In Perceptual

development: visual, auditory, and speech perception in infancy , edited by

A. M. Slater. UCL Press, pages 389–420.

Werker, Janet F. and Richard C. Tees. 1984. Cross-language speech perception:

evidence for perceptual reorganization during the first year of life. Infant Be-

havior and Development 7:49–63.

Whalen, D. H. and Yi Xu. 1992. Information for Mandarin tones in the amplitude

contour and in brief segments. Phonetica 49:25–47.

Wickham, Hadley. 2009. ggplot2: elegant graphics for data analysis . Springer.

Widdows, Dominic. 2004. Geometry and meaning . CSLI.

Wong, Patrick C. M. and Randy L. Diehl. 2003. Perceptual Normalization for

Inter- and Intratalker Variation in Cantonese Level Tones. Journal of Speech,

Language & Hearing Research 46(2):413–421.

243



Wong, Wai Yi P., Marjorie K. M. Chan, and Mary E. Beckman. 2005. An

autosegmental-metrical analysis and prosodic annotation conventions for Can-

tonese. In Prosodic typology , edited by Sun-Ah Jun. Oxford University Press,

pages 271–301.

Wong, Ying Wai. 2006. Contextual Tonal Variations and Pitch Targets in Can-

tonese. In Proceedings of Speech Prosody 2006, Dresden.

Xu, Nan and Denis Burnham. submitted. Tone hyperarticulation in Cantonese

infant-directed speech. Developmental Science .

Xu, Yi. 1994. Production and perception of coarticulated tones. The Journal of

the Acoustical Society of America 95(4):2240–2253.

Xu, Yi. 1997. Contextual tonal variations in Mandarin. Journal of Phonetics

25:61–83.

Xu, Yi and Xuejing Sun. 2002. Maximum speed of pitch change and how it may

relate to speech. The Journal of the Acoustical Society of America 111(3):1399–

1413.

Yang, Ruo-Xiao. 2011. The phonation factor in the categorical perception of

Mandarin tones. In Proceedings of ICPhS XVII . pages 2204–2207.

Yang, W.-J., J.-C. Lee, Y.-C. Chang, and H.-C. Wang. 1988. Hidden Markov

model for Mandarin lexical tone recognition. Acoustics, Speech and Signal

Processing, IEEE Transactions on 36(7):988–992.

Yip, Moira. 2002. Tone. Cambridge University Press.

Yu, Alan C. L. 2007. Understanding Near Mergers: The Case of Morphological

Tone in Cantonese. Phonology 24(01):187–214.

244



Yu, Alan C. L. 2009. Tonal mapping in Cantonese vocative reduplication. In

Proceedings of BLS 35 .

Yu, Kristine M. 2010. Laryngealization and features for Chinese tonal recognition.

In INTERSPEECH-2010 .

Yu, Kristine M. and Hiu Wai Lam. 2011. The role of creaky voice in Cantonese

tonal perception. In Proceedings of ICPhS XVII .

Zee, Eric. 1998. Resonance frequency and vowel transcription in Cantonese. In

Proceedings of the 10th North American Conference of Chinese Linguistics and

the 7th Annual Meeting of the International Association of Chinese Linguistics .

Graduate Students in Linguistics (GSIL) at USC, Los Angeles, pages 90–97.

Zhang, J.-S. and K. Hirose. 2000. Anchoring hypothesis and its application to

tone recognition of Chinese continuous speech. In Acoustics, Speech, and Signal

Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE International Confer-

ence on, volume 3. pages 1419–1422.

Zhang, Jin-Song, Satoshi Nakamure, and Keikichi Hirose. 2000. Discriminating

Chinese Lexical Tones by Anchoring F0 Features. In ICSLP-2000 . pages 87–90.

Zhang, Jinsong and Keikichi Hirose. 2004. Tone nucleus modeling for Chinese

lexical tone recognition. Speech Communication 42(3-4):447–466.

Zhou, Ning, Wenle Zhang, Chao-Yang Lee, and Li Xu. 2008. Lexical Tone Recog-

nition with an Artificial Neural Network. Ear and hearing 29(3):326–335.

245


